
MATH 2XX3 - Advanced Calculus II

Sang Woo Park

April 8, 2017

Contents

1 Introduction 3
1.1 Vector norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Subset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Functions 6
2.1 Limits and continuity . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Differentiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Chain rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Paths and Curves 16
3.1 Directional derivatve . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Parameterized curve . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Geometry of curves in R3 . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Implicit functions 28
4.1 The Implicit Function Theorem I . . . . . . . . . . . . . . . . . . 28
4.2 The Implicit Function Theorem II . . . . . . . . . . . . . . . . . 31
4.3 Inverse Function Theorem . . . . . . . . . . . . . . . . . . . . . . 33

5 Taylor’s Theorem 36
5.1 Taylor’s Theorem in one dimension . . . . . . . . . . . . . . . . . 36
5.2 Taylor’s Theorem in higher dimensions . . . . . . . . . . . . . . . 37
5.3 Local minima/maxima . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Calculus of Variations 45
6.1 Single variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Multi-variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7 Fourier Series 53
7.1 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.2 Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

1



7.4 Orthogonal functions . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.4.1 Gram-schmidt process . . . . . . . . . . . . . . . . . . . . 62
7.4.2 Eigenvalue problems . . . . . . . . . . . . . . . . . . . . . 63

2



1 Introduction

In this course, we are going to study calculus using the concepts from linear
algebra.

1.1 Vector norm

Definition 1.1. Euclidean norm of ~x = (x1, x2, . . . , xn) is given as

‖~x‖ =
√
~x · ~x =

√√√√ n∑
j=1

x2j

Theorem 1.1 (Properties of a norm).

1. ‖~x‖ ≥ 0 and ‖~x‖ = 0 iff ~x = ~0 = (0, 0, . . . , 0).

2. For all scalars a ∈ R, ‖a~x‖ = |a| · ‖~x‖.

3. (Triangle inequality) ‖~x+ ~y‖ ≤ ‖~x‖+ ‖~y‖.

We say that this is a property of a norm because there are other norms, which
measure distance in Rn in different ways!

Example 1.1.1 (A non-pythagorian norm - The Taxi Cab Norm). Consider
the following vector ~p = (p1, p2) ∈ R2. The euclidean norm gives the length of
the diagonal line. On the other hand,

‖~p‖1 = |p1|+ |p2|

gives us the total distance in a rectangular grid system.
For ~p = (p1, p2, . . . , pn) ∈ Rn, ‖~p‖1 =

∑n
j=1 |pj |. Note that the Taxi Cab

norm is a valid norm because it satisfies all properties of a norm above. So it also
gives us a valid alternative way to measure distance in Rn, dist(~p, ~q) = ‖~p− ~q‖.
This way of measuring distance gives Rn a different geometry.

Definition 1.2. Neighborhood of a point ~p, or disks centered at ~p is defined as

Dr(~p) =
{
~x ∈ Rn

∣∣‖~x− ~p‖ < r
}

Remark. The neighborhood around ~a of radius r may be written using any of
the following notations:

Dr(~a) = Br(~a) = B(~a, r)

Definition 1.3. Sphere is defined as

Sr(~p) =
{
~x ∈ Rn

∣∣‖~x− ~p‖ = r
}
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What neighboorhood and sphere look like depends on which norm you
choose. First, let’s start with the familiar euclidean norm. Then, the sphere is
given by

‖~x− ~p‖ = r

⇐⇒

√√√√ n∑
j=1

(xj − pj)2 = r

Then, we have
n∑
j=1

(xj − pj)2 = r2

If n = 3, we have (x1 − p1)2 + (x2 − p2)2 + (x3 − p3)2 = r2, usual sphere in R3

with center ~p = (p1, p2, p3)
If n = 2, we have (x1− p1)2 + (x2− p2)2 = r2, usual circle in Rn with center

~p = (p1, p2).
If we replace Euclidean norm by the Taxi Cab norm (for simplicity, take

~p = ~0), we have

Staxi
r (~0) =

{
~x ∈ Rn

∣∣‖~x−~0‖1 = r
}

In other words, we have

~x ∈ Staxi
r (~0) ⇐⇒

n∑
j=1

|xj | = r

Looking at it in R2, we have ~x = (x1, x2). Then, r = |x1|+ |x2|. This, in fact,
is a diamond.

Remark. Note that |x1| + |x2| = r is a circle in R2 under the Taxi Cab norm.
Then, we have

π =
circumference

diameter
=

8r

2r
= 4

1.2 Subset

Let’s introduce some properties of subsets in Rn. A ⊂ Rn means A is a collection
of points ~x, drawn from Rn.

Definition 1.4. Let A ⊂ Rn, and ~p ∈ A. We say ~p is an interior point of
A if there exists a neighbourhood of ~p, i.e. an open disk disk, which is entirely
contained in A:

Dr(~p) ⊂ A.

Example 1.2.1.

A =
{
~x ∈ Rn|~x 6= ~0

}
Take any ~p ∈ A, so ~p 6= ~0. Then, let r = ‖~p−~0‖ > 0, and Dr(~p) ⊂ A, since

~0 /∈ Dr(~p). (Notice: any smaller disk, Ds(~p) ⊂ Dr(~p) ⊂ A, where 0 < s < r
works to show that ~p is an interior point).
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So every ~p ∈ A is an interior point to A.

Definition 1.5. If every ~p ∈ A is an interior point, we call A an open set.

Example 1.2.2. A =
{
~x ∈ Rn|~x 6= ~0

}
is an open set.

Example 1.2.3. A = DR(~0) is an open set.

Proof. If ~p = ~0, Dr(~0) ⊆ A = DR(~0) provided r ≤ R. So ~p = ~0 is interior to A.
Consider any other ~p ∈ A. It’s evident that Dr(~p) ⊂ A = DR(~0) provided that
0 ≤ r ≤ R− ‖~p‖. Therefore, A = DR(~0) is an open set.

Example 1.2.4. Suppose we use Taxi Cab disks instead of Euclidean disk. It
does not change which points are interior to A since the diamond is inscribed
in a circle. In other words,

Dtaxi
r (~p) ⊂ DEuclid

r (~p)

Definition 1.6. The complement of set A is

Ac = {~x|~x /∈ A}

Definition 1.7. ~b is a boundary point of A if for every r > 0, Dr(~b) contains
both points in A and points not in A:

Dr(~b) ∩A 6= ∅ and Dr(~b) ∩Ac 6= ∅

In the example 1.2.3, the set of all boundary points of A = DR(~0){
~b
∣∣‖~b‖ = R

}
is a sphere of radius R.

Definition 1.8. A set A is closed if Ac is open.

Theorem 1.2. A is cloased if and only if A contains all its boundary points.

Example 1.2.5. Consider the following set:

A = {(x1, x2) ∈ R2
∣∣x1 ≥ 0, x2 > 0}

If ~p1 = (p1, p2), where p1 > 0, p2 > 0, then ~p1 is an interior point. Take
r = min{p1, p2}. Then, Dr(~p) ⊂ A. On the other hand, any ~p that lies on
either axes (including ~0) is a boundary point. Since there are boundary points
in A, A can’t be open.
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2 Functions

2.1 Limits and continuity

In this section, we will be considering vector valued functions such that

F : A ⊆ Rn → Rk.

Using matrix notation we can write:

F (x1, x2, . . . , xn) =


F1(x1, x2, . . . , xn)
F2(x1, x2, . . . , xn)

...
Fk(x1, x2, . . . , xn)

 .
Example 2.1.1. For a (k×n) matrix M , we can define the following function:

F (~x) = M~x.

First, we want to study limits. What does lim~x→~a F (~x) = ~L mean? Note
that it’s not enough to treat the variables x1, x2, . . . xn separately.

Example 2.1.2. Consider the following function:

F (x, y) =
xy

x2 + 4y2
,

where (x, y) 6= (0, 0).

First, we can attempt to find its limit at (0, 0) by considering each variable
separately.

lim
x→0

(
lim
y→0

F (x, y)

)
= lim
x→0

(
0

x2

)
= lim
x→0

= 0

Similarly, we have

lim
y→0

(
lim
x→0

F (x, y)
)

= 0

However, if we take (x, y) → (0, 0) along a straight line path with y = mx,
where m is constant, we have

F (x,mx) =
mx2

x2 + 4m2x2
=

m

1 + 4m2

In this case, we have

lim
(x,y)→(0,0)
along y=mx

F (x, y) =
m

1 + 4m2

Therefore, F (x, y) does not approach any particular value as (x, y)→ (0, 0).

6



Example 2.1.3 (Worse). Consider the following function:

F (x, y) =
y2

x4 + y2
.

If we approach (0, 0) along y = mx, limit equals 1. However, if we approach
along a parabola, y = mx2, limit equals m2/(1 + m2). We get different limits
along different parabolas.

We showed that computing

lim
~x→~a

F (~x) = ~b

is tricky because ~x→ ~a has to be more precise. It can’t depend on the path or
the direction on which ~x approaches ~a, but only on proximity. In other words,
we want ‖F (~x)−~b‖ to go to zero as ‖~x− ~a‖ goes to zero.

Definition 2.1. We say lim
~x→~a

F (~x) = ~b if for any given ε > 0, there exists δ > 0

such that whenever 0 < ‖~x− ~a‖ < δ, we have ‖F (x)−~b‖ < ε. Therefore,

lim
~x→~a

F (x) = ~b ⇐⇒ lim
~x→~a
‖F (~x)−~b‖ = 0

Remark. Geometrically, for any given ε > 0, there exists δ > 0 such that

F (~x) ∈ Dε(~b),

where ~x ∈ Dδ(~a).

Before doing examples, here’s a useful observations. Take ~v = (v1, v2, . . . , vn) ∈
Rn. Then, we have

‖~v‖ =

√√√√ n∑
j=1

v2j ≥
√
v2i = |vi|

for each coordinate i = 1, 2, . . . , n.

Example 2.1.4. Show

lim
(x,y)→(0,0)

2x2y

x2 + y2
= 0

Proof. Note that F : R \ {~0} → R, b = 0, ~a = (0, 0). Call

R = ‖~x− ~a‖ = ‖~x‖ =
√
x2 + y2
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Since F (~x) ∈ R, we have

‖F (~x)−~b‖ = |F (~x)− b|

=

∣∣∣∣ 2x2y

x2 + y2
− 0

∣∣∣∣
=

2|x|2|y|
x2 + y2

≤ 2 ·R2 ·R
R2

= 2R

= 2‖~x− ~a‖

By letting ‖~x − ~a‖ = ‖~x‖ < ε/2, we get ‖F (~x) = ~b‖ < ε. Therefore, definition
is satisfied with δ ≤ ε/2

Example 2.1.5. Consider the following function, F : R3 \ {~0} → R:

3z2 + 2x2 + 4y2 + 6z2

x2 + 2y2 + 3z2
.

Determine whether
lim

(x,y,z)→(0,0,0)
F (x, y, z) = 2.

Proof. We have

‖F (x, y, z)−~b‖ = |F (x, y, z)− 2|

=

∣∣∣∣3z3 + 2x2 + 4y2 + 6z2

x2 + 2y2 + 3z2
− 2

∣∣∣∣
=

3|z|3

x2 + 2y2 + 3z2

≤ 3R3

x2 + y2 + z3

=
3R3

R2

= 3R

Then,
‖F (x, y, z)−~b‖ < 3R < ε

provided that

R = ‖~x−~0‖ < δ =
ε

3
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Definition 2.2. Consider a function F : Rn → Rk with domain A ⊆ Rn. For
~a ∈ A, we say F is continuous at ~a in the domain of F iff

F (a) = lim
~x→~a

F (~a)

Example 2.1.6. Going back the example 2.1.5, if we redefine F as follows,

F =

{
3z2+2x2+4y2+6z2

x2+2y2+3z2 (x, y, z) 6= (0, 0, 0)

2 (x, y, z) = (0, 0, 0)

then F is continuous at (0, 0, 0) (and in fact at all ~x ∈ R).

If F is continuous at every ~a ∈ A, (∀~x ∈ A), we say F is continuous on the
set A. Continuity is always preserved by the usual algebraic operations: sum.
product, quotient, and composition of continuous functions is continuous 1 .

2.2 Differentiability

Definition 2.3. For a function f : R→ R, its derivative is defined as

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

If it exists, we say f is differentiable at x.

Theorem 2.1. If f is differentiable at x, f(x) is also continuous at x.

Note that differentiable functions, f(x), are well approximated by their
tangent lines (also known as linearization). We wish to extend this idea to
F : Rn → Rm.

First, we try dealing with the independent variables, x1, x2, . . . , xn, one at
a time by using partial derivatives. We start by introducing the standard basis
in Rn:

~e1 = (1, 0, 0, . . . , 0)

~e2 = (0, 1, 0, . . . , 0)

...

~en = (0, 0, 0, . . . , 1)

(In R3, ~e1 =~i, ~e2 = ~j,~e3 = ~k).
For any ~x ∈ Rn, and h ∈ R, (~x + h~ej) moves from ~x parallel to the xj axis

by distance h. In other words,

~x+ h~ej = (x1, x2, . . . , xj + h, xj+1, . . . , xn).

1Provided we remain in the domain of continuity of both functions and denominators aren’t
zero
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Definition 2.4. Partial derivative of f(x) are defined as

∂f

∂xj
(~x) = lim

h→0

f(~x+ h~ej)− f(~x)

h
,

for all j = 1, 2, . . . , n.

Partial derivatives calculate the derivatives of f , treating of ~xj as the only
variable, and all others treated as constants. For a vector valued function F :
Rn → Rm,

F (~x) =


F1(~x)
F2(~x)

...
Fm(~x)

 ,
we treat each component Fi(~x) : Rn → R separately as a real valued function.
Each has n partial derivatives, and so F : Rn → Rm has (m × n) partial
derivatives, which form an (m× n) matrix:(

∂Fi
∂xj

)
i=1,2,...,m
j=1,2,...,n

.

We call this the derivative matrix or Jacobian matrix, DF (~x).

Example 2.2.1. Consider a function F : R2 → R3:

F (~x) =

 x21
x1x2
x42

 .
Jacobian of the function is given by

DF (~x) =

∂F1

∂x1

∂F1

∂x2
∂F2

∂x1

∂F2

∂x2
∂F3

∂x1

∂F3

∂x2


=

2x1 0
x2 x1
0 4x32


Do we get the same properties for DF (~x) as we did for single-value calculus?

Example 2.2.2. Consider the following function:

f(x, y) =

{
xy

(x2+y2)2 , (x, y) 6= (0, 0)

0, (x, y) = (0, 0)

Do the partial derivatives exist at (0, 0)?
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By definition,

∂f

∂x
(0, 0) = lim

h→0

f(0 + h, 0)− f(0, 0)

h

= lim
h→0

h·0
(h2+02)2 − 0

h

= lim
h→0

0

h
= 0

Similarly, ∂f∂y (0, 0) = 0 (symmetry of x, y). Therefore,

Df(0, 0) =
[
0 0

]
Although partial derivatives exist, f is not cotinuous at (0, 0)! (For example,
f(x,mx)→ ±∞ as x→ 0± for m 6= 0).

To get reasonable information from Df(~x), we need to say more. First, let’s
go back to f : R→ R. Note

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

⇐⇒ lim
h→0

(
f(x+ h)− f(x)

h
− f ′(x)

)
= 0

⇐⇒ lim
h→0

(
f(x+ h)− [

L︷ ︸︸ ︷
f(x) + hf ′(x)]

h

)
= 0

Numerator is the difference between f(x + h) and its linear approximation, L
(i.e. the tangent line). So f is differentiable at x if its linear approximation gives
an estimate of the value f(x + h) within an error which is small compared to
∆x = h. More precisely, the linearization of f(x) at x = a (or the tangent line)
is given by

La(x) = f(a) + f ′(a)(x− a)

We wish to extend this idea to higher dimensions. For F : Rn → Rm, F (~x)
has (m × n) partial derivates (see definition 2.4). Then, the linearization of F
at ~a is

L~a(~x) = F (~a)︸ ︷︷ ︸
m×1

+DF (~a)︸ ︷︷ ︸
m×n

(~x− ~a︸ ︷︷ ︸
n×1

).

So, L : Rn → Rm, just like F . The derivative matrix DF (~a) is a linear trans-
formation of Rn → Rm.

Notice that when n = 2 and m = 1, For F : R2 → R, we have

DF (~a) =
[
∂F
∂x1

(~a) ∂F
∂x2

(~a)
]
,

a (1× 2) row vector and

~x− ~a =

[
x1 − a1
x2 − a2

]
,
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so we have

L~a(~x) = F (~a) +
∂F

∂x1
(x1 − a1) +

∂F

∂x2
(x2 − a2),

a familiar equation of the tangent plane to z = F (x1, x2).
Finally, we introduce the idea of differentiability:

Definition 2.5 (Differentiability). We say F : Rn → Rm is differentiable if

lim
~x→~a

‖F (~x)− F (~a)−DF (~a)(~x− ~a)‖
‖~x− ~a‖

= 0.

Equivalently,

lim
~h→~0

‖F (~x+ ~h)− F (~x)−DF (~x)~h‖
‖~h‖

= 0

In summary, F is differentiable if ‖F (~x)−L~a(~x)‖ is small compared to ‖~x−~a‖.
Or, F (~x) is approximated by L~a(~x) with and error which is much smaller than
‖~x − ~a‖. Note that we write o (‖~x− ~a‖) “little-oh” for quantity which is small
compred to ‖~x− ~a‖. Using this notation, differentiability can be written as

‖F (~x)− F (~a−Df(~a)(~x− ~a)) ‖ = o(‖~x− ~a‖).

Example 2.2.3. Is the following function differentiable at ~a = ~0?

F (x1, x2) =


x2
2 sin x1√
x2
1+x

2
2

, ~x 6= ~0

0, ~x = ~0

First, we have
∂F

∂x1
(~0) = lim

h→0

F (~0 + h~e1)− F (~0)

h

= lim
h→0

0− 0

h
= 0

Similarly, we have
∂F

∂x2
(~0) = 0

So we have
DF (~0) =

[
∂F
∂x1

∂F
∂x2

]
=
[
0 0

]
For differentiability, we have to look at:∣∣∣∣∣ x22 sinx1√

x21 + x22
− 0−

[
0 0

]
·
[
x1
x2

]∣∣∣∣∣
=
x22| sinx1|√
x21 + x22
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Then,
|F (~x)− L~0(~x)|

~x−~0
=

x22| sinx1|(√
x21 + x22

)2 =
x22| sinx1|
x21 + x22

≤ R2 ·R
R2

= R = ‖~x−~0‖

By squeeze theorem, we have

lim
~x→~0

|F (~x)− L~0(~x)|
‖~x−~0‖

= 0

Therefore, F is differentiable at ~x = ~0

Example 2.2.4. Verify that F is differentiable at ~a = ~0.

F (~x) =

[
1 + x1 + x22

2x2 − x21

]
First, note that

F (~a) = F (~0) =

[
1
0

]
We also need to compute the Jacobian at ~0:

DF (~0) =

[
1 0
0 2

]
Then, we get the following linearization of the function:

L~0(~x) = F (~0) +DF (~x)(~x−~0)

=

[
1
0

]
+

[
1 0
0 2

] [
x1
x2

]
=

[
1 + x1

2x2

]
Then, look at

‖F (~x)− L~0(~x)‖
‖~x−~0‖

=

∥∥∥∥[ x22−x21
]∥∥∥∥

‖~x‖
=

√
x42 + x41√
x21 + x22

≤ R4+4

R
=
√

2R =
√

2‖~x−~0‖

As ~x → ~0, ‖~x − ~0‖ = R → 0, so by the squeeze theorem, the desired limit
goes to 0. Therefore, F is differentiable at ~0.

Theorem 2.2. Suppose F : Rn → Rm, and ~a ∈ Rn. If there exists a disk Dr(~a)
in which all the partial derivatives ∂(Fi(~x))/∂xj exist and are continuous, then
F is differentiable at ~x = ~a.
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Definition 2.6. A function which satisfies Theorem 2.2 is called continuously
differentiable, of C1.

So far as our example, we calculate the partial for ~x 6= ~0:

∂F

∂x1
= x22

(
cosx1

(
x21 + x22

)− 1
2 +

(
−1

2

(
x21 + x22

)− 3
2 2x1

)
sinx1

)
=

x22
(x21 + x22)3/2

[
cosx1

(
x21 + x22

)
− x1 sinx1

]
which is continuous as long as ~x 6= ~0. We do the same for ∂F

∂x2
and conclude

that F is C1 at all ~x 6= ~0. We summarize these ideas in the figure below:

2.3 Chain rule

Definition 2.7. Suppose A ⊆ Rn is open, and we have a function

F : A ⊆ Rn → Rm.

Similarly, supposed B ⊆ Rm is open, and we have a function

G : B ⊆ Rm → Rp.

Assume ~a ∈ A and F (~a) = ~b = B. The composition

H(~x) = G ◦ F (~x) = G (F (~x))

is a function Rn → Rp.

Example 2.3.1. Consider the following linear functions:{
F (~x) = M~x M an (m× n) matrix

G(~y) = N~y N an (p×m) matrix

Then,
H(~x) = G (F (~x)) = NM~x

is also a linear function, which is represented by the product NM .

Theorem 2.3. Assume F : Rn → Rm is differentiable at ~x = ~a and G : Rm →
Rp is differentiable at ~b = F (~a). Then, H = G◦F is differentiable at ~x = ~a and

DH(~a) = DG(~b)︸ ︷︷ ︸
DG(F (~a))

DF (~a)

Note that all of the various forms of Chain Rule done in first year calculus
can be derived directly from this general formula.
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Example 2.3.2. Consider the following functions, F : R3 → R2 and G : R2 →
R2:

F (~x) =

[
x21 + x2x3
x21 + x23

]
, G(~y) =

[
−y32

y1 + y2

]
Let H = G ◦ F (~x). Find DH(~a) where a = (1,−1, 0).

First, we have

DF (~x) =

[
2x1 x3 x2
2x1 0 2x3

]
, DF (1,−1, 0) =

[
2 0 −1
2 0 0

]
Similarly, we have

DG(~y) =

[
0 −3y2
1 1

]
, DG(1, 1) =

[
0 −3
1 1

]
By Chain Rule, we get

DH(1,−1, 0) = DG(1, 1)DF (1,−1, 0)

=

[
0 −3
1 1

] [
2 0 −1
2 0 0

]
=

[
−6 0 0
4 0 −1

]
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3 Paths and Curves

3.1 Directional derivatve

Definition 3.1. A path is ~C : R → Rn is a vector-valued function of a scalar
independent variable, usually, t:

~c(t) =


c1(t)
c2(t)

...
cn(t)


~c(t) can be thought of as a moving vector. It takes out a curve in Rn as t

increases. Basically, path is a way of describing a curve using functions. Note
that this is not the only way to describe a curve.

Example 3.1.1. A unit circle in R2 described as a path is

~c(t) = (cos t, sin t),

where t ∈ [0, 2π). But we could also describe the unit circle non-parametrically
as

x2 + y2 = 1

Note that the same curve can be described by diffrent paths. Going back to
unit circle, we can also write

~b(t) =
(
sin(t2), cos(t2)

)
.

Using different paths can change (1) time dyanmics and (2) direction of the
curve. This curve has a non-constant speed and reversed orientation.

If ~c is differentiable, D~c(t) is an (n×1) matrix. Since each compoenent ~cj(t)
is a real-valued function of only one variable, the partial-derivative is the usual
derivative:

∂cj
∂t

=
dcj
dt

= c′j(t) = lim
h→0

cj(t+ h)− cj(t)
h

So D~c(t) = ~c ′(t) is written as a column vector:

D~c(t) =


c′1(t)
c′2(t)

...
c′3(t)


= lim
h→0

~c(t+ h)− ~c(t)
h

which is a vector which is tangent to the curve traced out at ~x = ~x(t). Physically,
~c ′(t) is the velocity vector for motion along the path.
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Example 3.1.2 (Lines). Given two points, ~p1, ~p2 ∈ Rn, there is a unique line
connecting them. One path which represents this line is

~c(t) = ~p1 + t~v,

where ~v = ~p2 − ~p1. Velocity is then given by ~c ′(t) = ~v, a constant.

Definition 3.2. f : Rn → R is a scalar-valued function.

If f : Rn → R is differentiable, Df(~x) is a (1× n) matrix:

Df(~x) =
[
∂f
∂x1

∂f
∂x2

· · · ∂f
∂xn

]
We use paths ~c(t) to explore f(x) by looking at

h(t) = f ◦ ~c(t) = f (~c(t)) .

where h : R→ R, By chain rule,

Dh(t) = h′(t) = Df(~c(t))︸ ︷︷ ︸
1×n

D~c(t)︸ ︷︷ ︸
n×1

= Df (~c(t))~c ′(t)

=
[
∂f
∂x1

∂f
∂x2

· · · ∂f
∂xn

]
c′1
c′2
...
c′n


We can think of this as a dot product of ~c ′(t) with a vector DfT = ∇f , the
gradient vector:

h′(t) = ∇f(~c(t)) · ~c ′(t)

Suppose f : Rn → R is differentiable at ~a ∈ Rn, and we have a path
~c : Rn → R with ~c(0) = ~a. Let ~v = ~c ′(0). Then, h′(0) measures rate of change
of f along the path as we cross through ~a:

h′(0) = ∇f(~c(0)) · ~c ′(0)

= ∇f(~c(0)) · ~v

Note that we get the same value for h′(0) for any path ~c(t) going through ~a
with velocity ~c ′(t) = ~v. In other words, h′(0) says something about f at ~a, and
not the path ~c(t).

Definition 3.3 (Directional derivative). The directional derivative of f at ~a in
direction ~v is given by

D~vf(~a) = Df(~a)~v = ∇f(~a) · ~v.

17



Now, we can make some observations. Using the Chain Rule, directional
derivatives can be rewritten as

D~vf(~a) = lim
t→0

f(~a+ t~v)− f(~a)

t
.

Note the similarity to partial derivatives, where ~v = ~ej .
Second, notice that D2~vf(~a) = ∇f(~a) · (2~v) = 2D~vf(~a). To get the in-

formation on how fast f is changing at ~a, we need to restrict to unit vectors
‖~v‖ = 1.

Directional derivatives also gives a geometrical interpretation of the gradient
vector, ∇f(~a). We use the Cauchy-Schwartz Inequality2 to do so. By applying
the Cauchy-Schwartz inequality, we get:

D~vf(~a) = ∇f(~a) · ~v ≤ ‖∇f(~a)‖‖~v‖ = ‖f(~a)‖.

Therefore, we can conclude that the length of ‖∇f(~a)‖ is the largest of D~vf(~a)
among all choices of unit directions ~v. In other words, the direction ~v in which
f(~x) increases most rapidly is the direction of ∇f(~a), i.e.

~v =
∇f(~a)

‖∇f(~a)‖
,

provided that ∇f(~a) 6= ~0.
Similarly, −∇f(~a) points in the direction of largest of f(~x), i.e.

~v = − ∇f(~a)

‖∇f(~a)‖
,

gives the most negative directional derivative.

3.2 Parameterized curve

A path, ~c(t), is {continuous, differentiable, and C1} provided that each compo-
nent cj(t), j = 1, 2, . . . , n are. Note that {~c(t) : t ∈ [a, b]} traces out a curve

in Rn, with initial endpoint, ~a, and final endpoint, ~b. Therefore, the path ~c(t)
parameterizes the curve drawn out.

Recall that for any function F : Rk → Rn, differentiability means that
tangent (i.e. linearization) makes a good aproximation. For a differentiable
path, ~c ′(t) is a tangent vector to the curve drawn out when ~c ′(t) 6= 0. We call
~v(t) = ~c ′(t) the velocity vector (v = ‖~v‖ = ‖~c ′(t)‖ is the speed).

Finally, we can define the unit tangent vector:

Definition 3.4. Unit tangent vector is defined as

~T (t) =
~v

‖~v(t)‖
=

~c ′(t)

‖~c ′(t)‖
2For any vectors ~u · ~v ≤ ‖~y‖‖~v‖, and equality holds if and only if ~u = t~v for a scalar t.
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Example 3.2.1. Consider a path, ~c : R→ R2:

~c(t) =
(
cos3 t, sin3 t

)
, t ∈ [−π, π].

This is a C1 path3 whose velocity vector is given by

~c ′(t) =
(
−3 cos2 t sin t, 3 sin2 t cos t

)
.

To find the unit tangent, we have to find its speed first:

v =
∥∥(−3 cos2 t sin t, 3 sin2 t cos t

)∥∥
= 3| sin t cos t| ‖(− cos t, sin t)‖
= 3| sin t cos t|

Then, its unit tangent is given by

~T (t) =
~v(t)

‖~v(t)‖
=

(
−| cos t| sin t

| sin t|
, | sin t| cos t

| cos t|

)
Note that its tangent is undefined when sin t = 0 or cos t = 0, i.e. at multiples

of π2 . Worse, sin t
| sin t| ,

cos t
| cos t| flip discontinuously as t crosses a multiple of π/2 from

−1 to +1, or vice versa. Although the path is C1, the curve is not smooth!
When ~v(t) = ~c ′(t) = 0, it allows the curve to have cusps.

Note that it is possible to have a nice tangent direction even when ~c ′(t) = 0:

Example 3.2.2. Consider a parameterized straight line:

~c = ~a+ ~wt3

Its velocity vector, ~c ′(t) = 3~wt2, is equal to ~0 when t = 0. However, it still has
a tangent direction which is parallel to ~w.

Definition 3.5. We say a parameterized curve is smooth4 (or regular) if its
path is C1, i.e. if it can be parameterized by a path ~c(t), and ‖~c ′(t) 6= 0‖ for any
t.

If ~c(t) is twice-differentiable, ~c ′′(t) = ~a(t) gives us the acceleration vector.

Theorem 3.1.

1. If f : R→ R, ~c : R→ Rn, both differentiable,

d

dt

(
f(t)~c(t)

)
= f(t)~c ′(t) + f ′(t)~c(t)

=

n∑
j=1

d

dt

(
f(t)~cj(t)

)
~ej

=

n∑
j=1

d

dt

(
f ′(t)~cj(t) + f(t)~cj

′(t)
)
~ej

3In fact, it is C∞, differentiable to all orders!
4For a smooth curve, the unit tangent ~T (t) is continuous.
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2. If ~c, ~d : R→ Rn are differentiable,

d

dt

(
~c(t) · ~d(t)

)
= ~c ′(t) · ~d(t) + ~c(t) · ~d ′(t)

3. If ~c, ~d : R→ R3 are differentiable,

d

dt

(
~c(t)× ~d(t)

)
= ~c(t)× ~d ′(t) + ~c ′(t)~d(t),

where ~c× ~d =
∑3
i,j,k=1 = cidj~ekεijk. εijk is defined in the footnotes5.

Example 3.2.3. Suppose ~c is a twice differentiable path and ~a(t) = k~c(t) for
some constant k 6= 0. Show that ~c(t) describes a motion in a fixed plane.

Define a vector
~n = ~c(t)× ~v(t) = ~c(t)× ~c ′(t)

Notice ~n ⊥ ~c(t) and ~v(t), i.e. ~n is normal to the plane.

d~n

dt
=

d

dt
(~c(t)× ~c ′(t)) = ~c(t)× ~c ′′(t)︸ ︷︷ ︸

~a(t)

+~c ′(t)× ~c ′(t)︸ ︷︷ ︸
~0

= ~c(t)× k~c(t)
= ~0

Therefore, ~n is constant in time!
So ~c(t) and ~v(t) are, for all t, perpendicular to the constant vector ~n. Then,

P = {~w | ~w · ~n = 0}

is the plane through ~0. So ~c(t) ∈ P for all t.

Definition 3.6 (Arclength). The arclength (or distance travelled along the pa-
rameterized curve) for a ≤ t ≤ b is∫ b

a

‖~c ′(t)‖︸ ︷︷ ︸
speed

dt

For a variable time interval, the arclength function

s(t) =

∫ t

a

‖~c ′(u)‖du

is a distance travelled from time a to time t.

5 εijk =


0 if i = j or j = k or k = l

1 if (i, j, k) is positively ordered

−1 if (i, j, k) is negatively ordered
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Example 3.2.4. Consider the following path:

~c(t) = (3 cos t, 3 sin t, 4t), t ∈ [0, 4π].

Its velocity vector is given by

~v(t) = (−3 sin t, 3 cos t, 4).

It follows that its speed is exactly equal to 5. Then, we can compute the
arclength:

s(t) =

∫ t

0

v(t)dt =

∫ t

0

5du = 5t

Therefore, total arclength is s(4π) = 20π.

Definition 3.7. When the path ~c(t) traces out the curve with speed ‖~v(t)‖ = 1
for all t, we say that the curve is arclength parameterized.

If a curve is arclength parameterized, arclength function becomes

s(t) = t

Then, we can use s instead of t as a parameterization in the path.

Example 3.2.5. In example 3.2.4, helix is not arclength parameterized but we
can re-parameterize it so that it is. To do so, we need to solve for t = ϕ(s) to
invert the function, s(t).

Going back the example, we had s(t) = 5t. It follows that t = 1
5s. Then,

~c(s) = ~c(ϕ(s)) = ~c
(s

5

)
=

(
3 cos

(s
5

)
, 3 sin

(s
5

)
,

4s

5

)
is an arclength parameterization of the original helix, i.e. ‖~c ′(s)‖ = 1, ∀s.

3.3 Geometry of curves in R3

Path,

~c(t) =

x(t)
y(t)
z(t)

 = (x, y, z)(t),

traces out a curve, for t ∈ [a, b], in space, and its velocity vector and speed are
given by ~c ′(t) and ‖~c ′(t)‖, respectively. This is a smooth parameterization if
~c ∈ C1 and ‖~c ′(t)‖ 6= 0 for any t ∈ [a, b].

We introduced the arclength function,

s(t) =

∫ t

a

‖~c ′(u)‖du,

the total distance along the curve up to time t.
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We also introduced the idea of arclength parameterization, where s(t) = t.
Then, since

ds

dt
= ‖~c ′(t)‖,

arclength parameterization is a path that travels along the curve with unit
speed, ds/dt = 1, throughout. Therefore, any path with ‖~c ′(t)‖ 6= 0 can be
parameterized by arclength by inverting s = s(t) such that t = ϕ(s). Note that
we can always do this for a smooth path (ds/dt > 0 so s(t) is monotonically
increasing). In practice, however, you may not be able to find an explicit formula
for the arclength parameterization!

Example 3.3.1. Consider the following path:

~c(t) = (t,
1

2
t2) :

Since y = x2/2, it’s a parabola. Then, we observe that

~c ′(t) = (1, t), ‖~c ′(t)‖ =
√

1 + t2 ≥ 1 > 0.

So the path is smooth. Then, we have

s(t) =

∫ t

0

‖~c ′(u)‖du =

∫ t

0

√
1 + u2du =

1

2

(
ln
∣∣∣√1 + t2 + t

∣∣∣+ t
√

1 + t2
)
.

Clearly, there’s no way we can solve for t as a function of s. The way out of
this trouble is to treat all ~c as if they were parameterized by arclength and use
Chain rule with ds/dt = ‖~c ′(t)‖ to compensate.

Recall that unit tangent vector to ~c(t) is

~T (t) =
~c ′(t)

‖~c ′(t)‖
.

We wish to understand how direction of the curve changes over time:

Definition 3.8. The curvature of a curve is defined as rate of change of unit
tangent:

κ =

∥∥∥∥∥d~Tds
∥∥∥∥∥ .

By chain rule,

d~T

dt
=
d~T

ds
· ds
dt

So, in the original time parameter, t,

κ(t) =

∥∥∥∥∥ 1
ds
dt

d~T

dt

∥∥∥∥∥ =
‖~T ′(t)‖
‖~c ′(t)‖
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Example 3.3.2. Consider a circle of radius R > 0 in xy-plane:

~c(t) = (R sin t, R cos t).

Now, we can easily find its velocity vector and speed:

~c ′(t) = (R cos t,−R sin t)

‖~c ′(t)‖ = R

Notice that this travels with constant speed but is not arclength parameterized.
We can also find its unit tangent:

~T (t) =
~c ′(t)

‖~c ′(t)‖
=
~c ′(t)

R
= (cos t,− sin t)

Then,
~N(t) = ~T ′(t) = (− sin t,− cos t)

Again, notice that ~N(t) is perpendicular to ~T (t).
Finally, we have

κ(t) =
‖~T ′(t)‖
‖~c ′(t)‖

=
1

R
.

Therefore, circle with large radius has less curvature.

Example 3.3.3. Consider the following helix:

~c(t) = (3 cos t, 3 sin t, 4t).

Following the same approach as shown in the previous example, we get

~c ′(t) = (−3 sin t, 3 cos t, 4)

‖~c ′(t)‖ = 5

~T (t) =

(
−3

5
sin t,

3

5
cos t,

4

5

)
~T ′(t) =

(
−3

5
cos t,−3

5
sin t, 0

)
Then,

κ(t) =
‖~T ′(t)‖
‖~c ′(t)‖

=
3/5

5
=

3

25

This curve also has a constant curvature.

Definition 3.9 (Principal normal vector).

~N =
~T ′(s)

‖~T ′(s)‖
=

~T ′(t)

‖~T ′(t)‖
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Since ‖~T (s)‖ = 1 for all s, ~T (s) · ~T (s) = ‖~T (s)‖2 = 1. By implicit differenti-
ation, we have

d

ds
(1) =

d

ds
(~T (s) · ~T (s))

0 = ~T ′(s) · ~T (s) + ~T (s) · ~T ′(s)

= 2~T ′(s) · ~T (s)

Therefore, ~T ′(s) ⊥ ~T (s) for all s. So as long as ~T ′(s) 6= 0, i.e. κ 6= 0, we have
~N(s) ⊥ ~T (s). In fact, ~T ′(s) = ‖~T ′(s)‖ ~N = κ ~N, so the tangent turns in the

direction of ~N . For motion in a line, where κ(s) = 0 for all s, ~N cannot be
defined!

~T , ~N determines a plane in R3, the osculating plane. The normal vector to
the osculating plane is given by

~B = ~T × ~N.

Definition 3.10 (Binormal vector). ~B = ~T × ~N

We observe that ~B ⊥ ~T , ~B ⊥ ~N , and

‖ ~B‖ = ‖~T‖‖ ~N‖| sin θ| = 1 · 1 · sin (π/2) = 1

Therefore, {~T (s), ~N(s), ~B(s)} is a moving orthonormal basis for R3 at each point
along the curve. This plane is also referred to as moving frame or frenet frame.
Now, we introduce the following consequences:

(1). If curvature κ(s) = 0 for all s, then the curve is a straight line.

To see this, ~T ′(s) = κ ~N(s) = 0 for all s. Therefore, ~T (s) = ~u is a constant
vector and

~r(s) = ~us+ ~p,

a line thorugh ~p = ~r(0) with direction vector ~u.

(2). When κ = 0, ~N and ~B cannot be defined.

(3). If ~B(s) is a constant vector, then ~c(t) (~r(t)) move in a fixed plane, with

normal vector ~B.

Now, suppose ~B(s) isn’t constant. First, ‖ ~B(s)‖ = 1 for all s. Then,

1 = ‖ ~B(s)‖2 = ~B(s) · ~B(s)

holds for all s. So we can apply implicit differentiation:

0 =
d

dS
(1) =

d

dS

(
~B · ~B

)
= 2 ~B ′ · ~B.
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Then, it follows that ~B ′ ⊥ ~B, for every s.
Next, since ~B(s) ⊥ ~T (s) for all s, we have ~B · ~T = 0 for all s. Then,

d

ds

(
~B · ~T

)
= ~B ′(s) · ~T (s) + ~B(s) · ~T ′(s) = 0.

Since ~T ′ = κ ~N and ~B · ~N = 0, it follows that

~B ′(s) · ~T (s) = 0 ⇐⇒ ~B ′(s) ⊥ ~T (s)

Since
{
~T , ~N, ~B

}
form a orthonormal basis for R3, we must have ~B ′(s) parallel

to ~N . Therefore,
~B ′(s) = −τ(s) ~N(s)

for a function τ(s) called the torsion. Since τ = ‖d ~B/ds‖, it measures how fast

the normal ~B to the osculating plane is twisting.

Definition 3.11 (Torsion).

τ =

∥∥∥∥∥d ~Bds
∥∥∥∥∥ =

‖ ~B ′(t)‖
‖~c ′(t)‖

Putting all the information together we get Frenet formulas:

Theorem 3.2 (Frenet formula).
d~T
ds = κ ~N
d ~B
ds = −τ ~N
d ~N
ds = −κ~T + τ ~B

Example 3.3.4. Consider the following helix:

~c(t) = (3 cos t, 3 sin t, 4t)

Then, we have
‖~c ′(t)‖ = 5,

~T (t) =

(
−3

5
sin t,

3

5
cos t,

4

5

)
,

~T ′(t) =

(
−3

5
cos t,−3

5
sin t, 0

)
,

κ =
3

25
,

~N(t) = (− cos t,− sin t, 0),

~B(t) = ~T × ~N =

(
4

5
sin t,−4

5
cos t,

3

5

)
,

~B ′ =

(
4

5
cos t,

4

5
sin t, 0

)
,

τ =
4

25
.
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3.4 Dynamics

How do these quantities relate to dynamical quantities? Given, ~c(t), a position

vector along the curve, ~c ′(t) = ~v(t) = ~T (t) · ds/dt is its velocity vector and
‖~c ′(t)‖ = ds/dt is its speed.

Definition 3.12 (Acceleration). ~a(t) = ~v ′(t) = ~c ′′(t)

First, observe that

~v(t) = ~c ′(t) =
ds

dt
· ~T (t)

Then,

~a(t) =
d

dt

(
ds

dt
· ~T (t)

)
=
d2s

dt2
· ~T (t) +

ds

dt
· ~T ′(t)

=
d2s

dt2
· ~T +

ds

dt
·

(
d~T

ds
· ds
dt

)
So we have

~a(t) =
d2s

dt2
· ~T︸ ︷︷ ︸

Linear acceleration

+κ

(
ds

dt

)2

~N︸ ︷︷ ︸
Steering-term

By looking at the steering term, we see that acceleration to turn on a curve is
proportional to the curvature and (speed)2.

Example 3.4.1. Consider the following path

~c(t) = (et cos t, et sin t, et)

that drwas a spiral in xy direction and monotonically increases along z coordi-
nate.

First, observe that

~v(t) = ~c ′(t) = (−et sin +et cos t, et cos t+ et sin t, et)

ds

dt
= ‖~c ′(t)‖ =

√
3et

Then, we have

~T (t) =
~c ′(t)

‖~c ′(t)‖
=

1√
3

(− sin t+ cos t, cos t+ sin t, 1),

~T ′(t) =
~c ′(t)

‖~c ′(t)‖
=

1√
3

(− cos t− sin t,− sin t+ cos t, 0).

Since ‖~T ′(t)‖ =
√

2/3, we can easily find the principal normal vector:

~N(t) =
~T ′(t)

‖~T ′(t)‖
=

1√
2

(− cos t− sin t,− sin t+ cos t, 0)
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Then,

κ =
‖~T ′(t)‖
‖~c ′(t)‖

=

√
2

3
e−t.

Furthermore,

~B(t) = ~T (t)× ~N(t) = · · · = 1√
6

(cos t− sin t,− sin t− cos t, 2)

~B ′(t) =
1√
6

(− sin t− cos t,− cos t+ sin t, 0)

Therefore, torsion of the curve is given by

τ(t) =
‖ ~B ′(t)‖
‖~c ′(t)‖

=
1

3
e−t

We can then veriy formula for ~a in terms of ~T , ~N, κ, (and verify that it agrees
with ~a = ~v ′(t) calculated directly).

Now, we present an alternative equation for curvature using dynamical quan-
tities:

Theorem 3.3.

κ(t) =
‖~c ′(t)× ~c ′′(t)‖
‖~c ′(t)‖3

=
‖~v(t)× ~a(t)‖
‖~v(t)‖3

Proof. To verify it, we use the decomposition of ~a:

~v × ~a = ~v ×

(
d2s

dt2
· ~T + κ

(
ds

dt

)2

~N

)

=
d2s

dt2

(
~v × ~T

)
+ κ

(
ds

dt

)2 (
~v × ~N

)
= κ

(
ds

dt

)3 (
~T × ~N

)
= κ

(
ds

dt

)3

~B

Then, κ(ds/dt)3‖ ~B‖ = ‖~v× ~a‖. Since ~B is a unit vector, the desired result has
been achieved.
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4 Implicit functions

4.1 The Implicit Function Theorem I

Often, we have an implicit relationship between variables,

F (x1, x2, . . . , xn) = 0,

rather than an explicit function relation, such as

xn = f(x1, x2, . . . , xn−1).

Example 4.1.1. Look at a familiar example in R2,

x2 + y2 = 1.

This fails vertical line test (y 6= f(x)) as well as horizontal line test (x 6= g(y));
globally, this relation does not define a function. Locally, we can write this as
a function, i.e. by restricting attention to small pieces of the curve.

First, define
F (x, y) = x2 + y2 − 1

If y0 > 0, x20 + y20 = 1, i.e. F (x0, y0) = 0, and we look at a window (or neighbor-
hood) around (x0, y0), which lies entirely in the upper half plane, we can solve
for y = f(x),

y =
√

1− x2︸ ︷︷ ︸
f(x)

We could calculate y′ = f ′(x) from the explicit formula but we can also get it
via implicit differentiation:

d

dx
(F (x, f(x))) =

∂F

∂x
· dx
dx

+
∂F

∂y
· f ′(x)

= 2x+ 2yf ′(x),

so f ′(x) = −x/y.

For a general F (x, y) = 0, we can solve for f ′(x) where its coefficient

∂F

∂y
(x0, y0) 6= 0,

where y is the variable we want to solve for. This gives the limitation on which
we can solve for y = f(x) locally! For the circle example,

∂F

∂y
= 2y.

When y = 0, the vertical line test fails in every neighborhood of (x0, y0) =
(±1, 0).
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In general, suppose we have a C1 function,

F : Rn+1 → R,

and consider all functions of F (~x, y) = 0. In order that y = g(~x), i.e. we can solve
for y as a differentiable function of ~x, we do the same implicit differentiation,
with the chain rule,

∂

∂xi
(F (x1, x2. . . . .xn, f(~x))) =

∂F

∂xi
+
∂F

∂y

∂f

∂xi

for each i = 1, 2, . . . , n. We can then solve for each

∂f

∂xi
=
−
∂F

∂xi
∂F

∂y

,

provided ∂F/∂y 6= 0. This is a sufficient condition to solve for y = f(~x).

Theorem 4.1 (Implicit Function Theorem I). Assume F : Rn+1 → R is C1

in a neighborhood of (~x0, y0) with F (~x0, y0) = 0. If ∂F
∂y (~x0, y0) 6= 0, then there

exists neighborhood U of ~x0 and V of y0 and a C1 function

f : U ⊂ Rn → V ⊂ R,

for which F (~x, f(~x)) = 0 for all ~x ∈ U . In addition,

Df(~x) =
− 1

∂F

∂y
(~x, y)

D~xF (~x, y),

where
D~xF (~x, y) =

[
∂F
∂x1

∂F
∂x2

· · · ∂F
∂xn

]
.

Example 4.1.2. Consider the following function:

xy + y2z + z3 = 1.

For which parts on this surface ca we write z = f(x, y), i.e.

F : R3 → R, F (x, y, z) = xy + y2z + z3 − 1

is C1?
We want to solve for z, so we look at

∂F

∂z
= y2 + 3z2

We observe that ∂F/∂z = 0 iff y = 0 and z = 0. However, y = 0 and z = 0
is not defined on this surface. At all points on this surface, ∂F/∂z 6= 0. So at
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every (x0, y0, z0) with F (x0, y0, z0) = 0, we can solve for z = f(x, y) locally near
(x0, y0)!

We can then use the implicit differentiation formula in the theorem to cal-
culate Df(x, y):

D(x,y)F =
[
y (x+ 2yz)

]
,

so we get

Df(x, y) =
−D(x,y)F

∂F/∂z
=

[
−

y

y2 + 3z2
−
x+ 2yz

y23z2

]
or

∇f(x, y) =

(
− y

y2 + 3z2
,−x+ 2yz

y23z2

)
.

Example 4.1.3. Consider the following equation:

x4 + xz2 + z4 = 1.

Show that we can solve for z = g(x) near (x1, z1) = (−1, 1) but not near
(x2, z2) = (1, 0).

Proof. First, let
F (x, z) = x4 + xz2 + z4 − 1.

Clearly, F : R2 → R is C1 for all (x, z) ∈ R2. Observe that

∂F

∂z
= 2xz + 4z3,

and so ∂F (−1, 1)/∂z 6= 0.
By the Implicit Function Theorem, we can solve for z = g(x) locally near

(x1, z1) = (−1, 1). In addition, we can get an explicit formula for its derivative:

Dg(x) = g′(x) = −
∂F (x, z)/∂x

∂F/∂z
= − 4x3 + z2

2xz + 4z3

Finally, since ∂F (1, 0)/∂z = 0, the Implicit Function Theorem does not
apply near (1, 0).

Example 4.1.4. Consider the following equation:

x− z3 = 0

Clearly, F (x, z) = x− z3 is C1 for all (x, z) ∈ R2. Note that

∂F

∂z
= −3z2.

Clearly, ∂F/∂z = 0 at (x, z) = (0, 0). However, we can write z = x1/3 globally.
So z = g(x) = x1/3 exists but isn’t differentiable at (x0, z0) = (0, 0).
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Example 4.1.5. Suppose we have a system of equations with more unknowns:{
u2 − v2 − x3 = 0

2uv − y5 = 0

Can we solve for (u, v) as functions of (x, y)?
First, consider a C1 function, F : R4 → R2, that is defined as follows:{

F1(x, y, u, v) = u2 − v2 − x2 = 0

F2(x, y, u, v) = 2uv − y5 = 0

Following what we did before, we can assume (u, v) = g(x, y) and see when
we can calculate Dg. Note that

0 =
∂

∂x
F1(x, y, u(x, y), v(x, y)) =

∂F1

∂x
+
∂F1

∂u

∂u

∂x
+
∂F1

∂v

∂v

∂x

0 =
∂

∂x
F2(x, y, u(x, y), v(x, y)) =

∂F2

∂x
+
∂F2

∂u

∂u

∂x
+
∂F2

∂v

∂v

∂x

Then, we can solve for ∂u/∂x and ∂v/∂x. Rearranging,∂F1

∂u

∂F1

∂v
∂F2

∂u

∂F2

∂v


∂u∂x∂v
∂x

 =

−∂F1

∂x

−
∂F2

∂x


This can be solved if D(u,v)F is invertible, i.e. det

[
D(u,v)F

]
6= 0.

Simiarly, we can also solve for ∂u/∂y and ∂v/∂y. As a result, we get a
different linear system to solve but with the same matrix

[
D(u,v)F

]
. The second

version of the Implicit Function Theorem says that this is the correct condition
to solve for g(x) in this setting.

4.2 The Implicit Function Theorem II

Implicit differentiation allows us to look at an underdetermined system of (non-
linear) equations. Given a following function,

F1(x1, . . . , xn, u1, . . . um) = 0

F2(x1, . . . , xn, u1, . . . um) = 0

...

Fm(x1, . . . , xn, u1, . . . um) = 0

we want to solve for ~u = (u1, . . . , um) ∈ Rm as a function, ~u = g(~x), of ~x =
(x1, . . . , xn) ∈ Rn. Via implicit differentiation, for the case of n = m = 2, we
arrived at an appropriate condition where this is possible.
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Theorem 4.2 (Implicit Function Theorem II - General Form). Let

F : Rn+m → Rm

be a C1 function in a neighborhood of (~x0, ~u0) ∈ Rn+m, with F (~x0, ~u0) = ~0. If,
in addition, D~uF (~x0, ~u0) is invertible, then there exists neighborhoods V of ~x0
and U of ~u0, for which solutions of F (~x, ~u) = ~0 lie on a C1 graph, ~u = g(~x),

g : V ⊂ Rn → U ∈ Rm

Example 4.2.1. Consider the following set of equations:{
2xu2 + yv4 = 2

xy(u2 − v2) = 0

Can we solve for (u, v) = g(x, y) near (x0, y0, y0, v0) = (1, 1,−1,−1)?
Let

F =

[
F1

F2

]
, ~x = (x, y), ~u = (u, v),

where F is defined as

F1(~x, ~u) = 2xu2 + yv4 − 2 = 0

F2(~x, ~u) = xy(u2 − v2 = 0)

Then, we get the following Jacobian

D~uF =
∂(F1, F2)

∂(u, v)

=

∂F1

∂u

∂F1

∂v
∂F2

∂u

∂F2

∂v


=

[
4xu 4yv3

2uxy −2vxy

]
Substituting the given values, we have

D~uF (1, 1,−1,−1) =

[
−4 −4
−2 2

]
Since detD~uF = −16 6= 0, the Implicit Function Theorem does apply, and we
can solve for ~u = (u, v) = g(~x) = g(x, y) near (x0, y0, u0, v0) = (1, 1,−1,−1).

Remark. In general, we can’t get an explicit formula for g, but we can get a
formula for Dg(x, y), /ie its partial derivatives, using implicit differentiation.
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Example 4.2.2. Consider the following set of equations:{
x = u2 − v2

y = 2uv

Note that this example fits the form of the Implicit Function Theorem, but it’s
a special case. We want to invert this relationtion, i.e. given, ~x = f(~u), we want
to solve for ~u = g(~x).

To get a nice theorem for this special case, we can use the framework of the
Implicit Function Theorem:{

F1(~x, ~u) = f1(~u)− x = 0

F2(~x, ~u) = f2(~u)− y = 0

Since
D~uF (~x, ~u) = Df(~u),

we can do this locally near a point (~x0, ~u0) provided that

det (Df(~u)) 6= 0

Note that if we had a linear system, ~x = M~u, we can solve ~u = M−1~x pro-
vided ~M 6= 0. This is why we call this derivative matrix, Df(~x) the linearization
of f(~u).

4.3 Inverse Function Theorem

In general, suppose we have a C1 function, f : Rn → Rn, where ~x = f(~u). How
do we solve for ~u = g(~x)?

First, let’s In single-variable calculus, a function f : R → R is one-to-one
on an interval [a, b] if and only if f is strictly monotone on [a, b]. For these
functions, f has an inverse g = f−1,

g(f(x)) = x, ∀x ∈ [a, b]

If f is differentiable on [a, b], and f ′(x) > 0 on [a, b] (or f ′(x) < 0 on [a, b]),
then the inverse g(x) is also differentiable, and

g′(f(x)) =
1

f ′(x)
, ∀x ∈ [a, b]

If, for example, f ′(x) > 0 for all x ∈ R, then it’s globally invertible, i.e. g(f(x)) =
x for all x ∈ R. How do we apply this for f : Rn → Rn with n ≥ 2?

Theorem 4.3 (Inverse Function Theorem). Suppose f : Rn → Rn which is C1

in a neighborhood of ~u0, with f(~u0) = ~x0. If det (Df(~u0)) 6= 0, then there exist
neighborhoods U of ~u0 and V of ~x0 and a C1 function g : V → U , with

~x = f(~u)
with ~u∈U

⇐⇒ ~u = g(~x)
with ~x∈V

,

i.e. near ~x0 and ~u0, g is the inverse of f .
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Example 4.3.1. Apply the Inverse Function Theorem to the function that was
defined in the previous example:{

x = u2 − v2

y = 2uv

Observe that

det (Df(u, v)) = det

[
2u −2v
2v 2u

]
= 4u2 + 4v2 6= 0

as long as (u0, v0) 6= (0, 0). So we can invert the variables and solve for (u, v) =
g(x, y), locally near any (u0, v0) 6= (0, 0).

Notice that
f1(−u,−v) = x = f1(u, v)

f2(−u,−v) = y = f2(u, v)

So in any neighborhood of (0, 0) there are 2 values of (u, v) corresponding to
each (x, y). So f is not invertible near (u, v) = (0, 0).

Example 4.3.2. Consider the following equations:{
x = ey cos v

y = eu sin v

For which (u, v, x, y) can we solve for u, v as functions of x, y?

Call

f(u, v) =

[
eu cos v
eu sin v

]
.

Then, we have

Df(u, v)

[
eu cos v −eu sin v
eu sin v eu cos v

]
Then, we can compute det(Df(u, v)), (or det

(
∂(x,y)
∂(u,v)

)
):

det(Df(u, v)) = e2u.

Clearly, det(Df(u, v)) > 0 for all u, v. By the Inverse Function Theorem, we
can invert and solve for (u, v) = g(x, y), near any (u0, v0).

We can invert locally near any point; can we find a global inverse, i.e. a g
for which (u, v) = g(x, y) for every (u, v) ∈ R2? If so, then f would have to be
a one-to-one function. However,

f(u, v + 2πk) = f(u, v)

for all k ∈ Z. Therefore, f can’t be globally inverted.
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Example 4.3.3. Consider the following equations:{
x = f1(u, v) = u3 − 3uv2

y = f2(u, v) = −v3 + 3u2v

Since they’re polynomials, f : R2 → R2 is C1. Then, we have

∂(x, y)

∂(u, v)
=

[
3u2 − 3v2 −6uv

6uv −3v2 + 3u2

]
det

(
∂(x, y)

∂(u, v)

)
= (3u2 − 3v2) + (6uv)2

Clearly, det (∂(x, y)/∂(u, v)) = 0 iff u = v = 0. So, Inverse Function Theorem
holds for all (u0, v0) 6= (0, 0), and we can solve for (x, y) = g(u, v) around any
(u0, v0) 6= (0, 0).
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5 Taylor’s Theorem

5.1 Taylor’s Theorem in one dimension

Consider a one-dimensional function:

g : R→ R,

which is Ck+1, i.e. it is (k + 1) times continuously differentiable; i.e., each
derivative,

djg

dxj
(x), j = 1, 2, . . . , k + 1, (of order up to and including the (k + 1)st),

exists and is a continuous function (in some interval). Then, we can approximate
g(x) locally near x = a by a polynomial of degree k, Tayloer’s polynomial, Pk(x):

Pk(x) = g(a) + g′(a)(x− a) +
1

2!
g′′(a)(x− a)2 + · · ·+ 1

k!

dkg

dxk
(a)(x− a)k

There are chosen to match g(x) up to the kth derivative at x = 0,

djPk
dxj

(a) =
djg

dxj
(a), j = 0, 1, 2, . . . , k.

For example, P1(x) = g(a) + g′(a)(x− a) is the tangent line. Since we know
that g is differentiable,

lim
x→a

|g(x)− P1(x)|
|x− a|

= 0 or g(x) = P1(x) + o(|x− a|)

Theorem 5.1 (Taylor’s Theorem). Assume g : R→ R is Ck+1 in a neighbor-
hood N around x = a. Then, for each x ∈ N , there is a c between a and x for
which

g(x) = Pk(x) +
1

(k + 1)!

dk+1g

dxk+1
(c)(x− a)k+1︸ ︷︷ ︸

Remainder term Rk(a,x)

Since we assume g is continuous, we have

lim
x→a

Rk(a, x)

|x− a|k
= 0,

i.e. Rk(a, x) = o
(
|x− a|k

)
. So Rk(a, x) is small compared with each of the

terms in Pk(x).

Remark. Locally, g(x) is well approximated by its Tayloer polynomials, but only
near x = a.
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Example 5.1.1. Notice that

g(x) = cosx = 1− 1

2
x2 + 0x3︸ ︷︷ ︸
P3(x)

+o(x4)

This tells us that cosx is quadratic near a = 0. However, this clearly doesn’t
work for x that is not near a = 0.

5.2 Taylor’s Theorem in higher dimensions

Can we apply Taylor’s Theorem for f : Rn → R, i.e., approximate a smooth
function locally near ~x = ~a via polynomial? We can do so by restricting our
attention to each line, ~x = ~a+ t~u, through ~a in direction ~u.

Assume f ∈ C3 near ~x0 ∈ Rn. Let’s sample f(~x) along a line running
through x0. Take a unit vector ~u, ‖~u‖ = 1, and the line,

~l(t) = ~x0 + t~u,

that goes through ~x0 at t = 0 in the direction of ~u. Then, we get

g(t) = f(~l(t)) = f(~x0 + t~u),

so g : R→ R.
By chain rule, if f is C3 near ~x0, then g is C3 near t = 0.So we use Taylors

Theorem in g:

g(0) = f(~x0),

g′(t) = Df(~x0 + t~u) ·~l ′(t) = Df(~x0 + t~u)~u.

So g′(0) = Df(~x0)~u = ∇f(~x0) · ~u. Using coordinates,

g′(t) =

n∑
i=1

∂f

∂xi
(~x0 + t~u)ui

so

g′′(t) =

n∑
i=1

d

dt

(
∂f

∂xi
(~x0 + t~u)

)
︸ ︷︷ ︸

D ∂f
∂xi
·~u

ui =
n∑
i=1

n∑
j=1

∂2f

∂xi∂xj
(~x0 + t~u)ujui

Therefore,

g′′(0) =

n∑
i=1

n∑
j=1

∂2f

∂xi∂xj
(~x0)ujui

Now, call

H(~x) =

[
∂2f

∂xi∂xj
(~x0)

]
i,j=1,...,n

,

the Hessian matrix of f at ~x0. For f , a C2 function, fxixj
= fxjxi

, so H(~x0) is
a symmetric matrix.

So g′′(0) = ~u ·H(~x0)~u. Using Taylor’s Theorem, for g, we get:
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Theorem 5.2 (Second order Taylor’s approximation). Assume f : Rn → R
and is C3 in a neighborhood of ~x0. Then,

f(~x)︸︷︷︸
g(~x0+t~u)

= f(~x0)︸ ︷︷ ︸
g(0)

+Df(~x0)(~x− ~x0)︸ ︷︷ ︸
g′(0)(t−0)

+
1

2!
(~x− ~x0) ·H(~x0)(~x− ~x0)︸ ︷︷ ︸

g′′(0)(t−0)2

+R2(~x0, ~x),

where

H(~x0) = D2f(~x0) =

[
∂2f

∂xi∂xj

]
i,j=1,2,...,n

is the hessian and

lim
~x→~x0

R2(~x0, ~x)

‖~x− ~x0‖2
= 0,

i.e. R2(~x0~x) = o(‖~x − ~x0‖2). Alternatively, the second order Taylor’s approxi-
mation can be written as

f(~a+ ~h) = f(~a) +Df(~a)~h+
1

2
~h ·D2f(~a)~h+R2(~a,~h),

with

lim
~h→~0

=
R2(~a,~h)

‖~h‖2
= 0.

Example 5.2.1. Find the second order Taylor polynomial of the following
functions:

f(x, y) = cos
(
xy2
)

near ~a = (π, 1).

First, we compute the derivatives:

f(~a) = f(π, 1) = cos(π) = 1,

∂f

∂x
= −y2 sin

(
xy2
)
,

∂f

∂y
= −2xy sin

(
xy2
)
,

∂2f

∂x2
= −y2 cos

(
xy2
)
y2,

∂2f

∂x∂y
= −2y sin

(
xy2
)
− 2xy3 cos

(
xy2
)
,

∂2f

∂y2
= −2x sin

(
xy2
)
− 2xy cos

(
xy2
)
.

Then, at ~a = (π, 1), we find that

Df(~a) =
[
0 0

]
D2f(~a) =

[
1 2π

2π 4π2

]
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So, we have

f(~a+ ~h) = −1 +
1

2
~h ·
[

1 2π
2π 4π2

]
~h+R2

f(π + h1, 1 + h2) = −1 +
1

2

[
h1
h2

]
·
[

h1 + 2πh2
2πh1 + 4π2h2

]
= −1 +

1

2

(
h21 + 4πh1h2 + 4π2h22

)
+ o(‖~h2‖)

In terms of a point ~x (near ~a), we can write ~x = ~a+ ~h, so ~h = ~x− ~a, and then

cos
(
xy2
)

= −1 +
1

2

(
(x− a1)2 + 4π(x− a1)(y − a2) + 4π2(y − a2)2

)
+R2.

Advantage to the f(~a+~h) form is that it makes it easier to guess the behaviour
of f(~x) near ~x = ~a.

5.3 Local minima/maxima

Definition 5.1. We say ~a is a local minimum for f if there exists an open disk
Dr(~a) for which

f(~a) ≤ f(~x)

for all ~x ∈ Dr(~a). ~a is a strict local minimum if

f(~a) < f(~x)

for all ~x 6= ~a, ~x ∈ Dr(~a).

Definition 5.2. We say ~a is a local maximum for f if ∃r > 0 with f(~a) ≥ f(~x),
∀~x ∈ Dr(~a). ~a is a strict local max if f(~a) > f(~x), ∀~x ∈ Dr(~a) \ {~a}.

Note that if f is differentiable, we have a necessary condition for local max-
ima and minima.

Theorem 5.3. If f has a local maxima or minima at ~a and is differentiable at
~a, then Df(~a) = ~0.

Proof. Again, we start by restricting to line through ~a:

g(t) = f(~a+ t~u),

where ~u is a unit vector. If f has a local minima at ~a, then

g(0) = f(~a) ≤ f(~a+ t~u) = g(t),

for all t with |t| < r. So g(t) has a local minima at t = 0. By a calculus theorem,
g′(0) = 0. But,

0 = g′(0) = Df(~a)~u,
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for all ~u. Then, by taking ~u = ~e1, ~e2 . . . , ~en, we get

∂f

∂xj
(~a) = 0,

for each j = 1, 2, 3, . . . , n. Therfore, Df(~a) = 0.

Definition 5.3. An ~a for which Df(~a) = 0 is called a critical point.

Example 5.3.1. In the previous example, ~a = (π, 1) was a critical point.

Now, we want to combine Taylor’s Theorem and linear algebra to classify
critical points as local minima, maxima, or others6. Taylor’s theorem states
that for ~x = ~a+ ~h, if ‖~h‖ is small,

f(~x) = f(~a+ ~h) = f(~a) +Df(~h)︸ ︷︷ ︸
0

+
1

2
~h ·D2f(~a)~h︸ ︷︷ ︸

quadratic form

+R2(~a,~h)︸ ︷︷ ︸
o(‖~h‖2)

So we expect the behaviour of f(~x) near ~a to be determined by the quadratic
term.

Notice that the Hessian matrix, M = D2f(~a), is a symmetric matrix. This
allows us to apply the following theorem:

Theorem 5.4 (Spectral Theorem). Assume M is a symmetric (n×n) matrix.
Then,

• All eigenvalues of M are real, λi ∈ R ∀i = 1, 2, . . . , n.

• There is an orthonormal basis composed ot eigenvalues of M ,

{~u1, ~u2, . . . , ~un},M~ui = λi~ui, ‖~ui‖ = 1, ~ui · ~uj = 0 for i 6= j

• In the basis of eigenvalues, M is a diagonal matrix. In other words, if we
let U be the matrix whose columns are the ~ui; then

MU = UΛ,

where Λ = diag(λ1, λ2, . . . , λn).

6 Cramer’s Rule. Given a system of linear equations that is represented by 2×2 matrices,{
ax+ by = s

cx+ dy = t
,

solution of the system is given by

x =

det

(
s b
t d

)
det

(
a b
c d

) , y =

det

(
a s
c t

)
det

(
a b
c d

)
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Remark. Note that since the eigenvalues are real, they can be ordered, smallest
to largest:

λ1 ≤ λ2 ≤ · · · ≤ λn.
However, they may not be necessarily distinct.

Written in the orthonormal basis of eigenvalues, the quadratic form, ~h ·M~h,
has an easy expression. Firt, we write

~h =

n∑
i=1

ci~ui, ci ∈ R, ∀i = 1, 2, . . . , n

Notice that

‖~h‖ =

√√√√ n∑
i=1

c2i

Then, we have:

~h ·M~h = ~h ·
n∑
i=1

ciM~ui

= ~h ·
n∑
i=1

λici~ui

=

n∑
i=1

λici(~h · ~ui︸ ︷︷ ︸
ci

)

=

n∑
i=1

λic
2
i

Theorem 5.5. Suppose M is a symmetric matrix with eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λn.

Then,
λ1‖~h‖2 ≤ ~h ·M~h ≤ λn‖~h‖2

Proof. First, we have

~h ·M~h =

n∑
i=1

λic
2
i

≤
n∑
i=1

λnc
2
i

= λn

n∑
i=1

c2i = λn‖~h‖2,

which proves the right hand inequality. For the let hand one,

~h ·M~h ≥
n∑
i=1

λ1c
2
i = λ1‖~h‖2.
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This proves both sides of the inequality.

Now we apply this idea to the Hessian via Taylor’s Theorem to get the
following theorem:

Theorem 5.6 (Second derivative test). Suppose f is C3 in a neighborhood of
a critical point ~a. Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of D2f(~a). Then,

1. If all eigenvalues are positive, then ~a is a strict local minima of f .

2. If all eigenvalues are negative, then ~a is a strict local maxima of f .

3. If D2f(~a) has at least one positive and at least one negative eigenvalue,
then ~a is a saddle point. In other words, ∃r0 > 0 for which in Dr(~a), 0 <
r < r0, there are points with f(~x) > f(~a) and points with f(~x) < f(~a).

Proof. Let’s verify (1). By Taylor’s Theorem, with ~x = ~a+ ~h, we have

f(~x) = f(~a+ ~h) = f(~a) +
1

2
~h ·D2f(~a)~h+R2(~a,~h)

Notice that
1

2
~h ·D2f(~a)~h ≥ 1

2
λ1‖~h‖2,

where λ1 is the smallest eigenvalue.
Now, we look at the rectangular term: R2(~a,~h) = o(‖~h‖2). By taking

ε = λ1/4 > 0, there exists δ > 0 for which

|R1|
‖~h‖2

< ε =
1

4
λ1,

if 0 < ‖~h‖ < δ, i.e. if ~h ∈ Dδ(~0), then |R2| < 1
4λ1‖~h‖

2. This implies that

R2 > − 1
4λ1‖~h‖

2.

Combining these two results with Taylor expansion, if ~x ∈ Dδ(~a),~h ∈ Dδ(~0),
we get

f(~x) ≥ f(~a) +
1

2
λ1‖~h‖2 −

1

4
λ1‖~h‖2

≥ f(~a) +
1

4
λ1‖~h‖2

> f(~a)

if ~h 6= 0,~h ∈ Dδ(~0), i.e. ~x ∈ Dδ(~a).

Remark. When D2f(~a) has zero as an eigenvalue, things can get complicated.
For example, if λi ≥ 0 for all i, you could still have a local minima. In this case,
the behaviour would be determined by higher order terms in Taylor Series. We
call this Degenerate critical point.
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Example 5.3.2. Consider

f(x, y, z) = x3 − 3xy + y3 + cos z

Find all critical points and classify them using the Hessian.

First, observe that 
∂f
∂x = 3x2 − 3y
∂f
∂y = −3x+ 3y2

∂f
∂z = − sin z

Critical points are defined as ∇f(~a) = ~0 so we get the following critical points

(0, 0, nπ), (1, 1, nπ),

where n ∈ Z.
Then, we want to compute the Hessian at each point.

D2f(~a) =

6x −3 0
−3 6y 0
0 0 − cos z


Notice that at (0, 0, nπ), we get

D2f(0, 0, 2kπ) =

 0 −3 0
−3 0 0
0 0 −1


D2f(0, 0, (2k + 1)π) =

 0 −3 0
−3 0 0
0 0 1


When n is even, we find that its eigenvalues are

λ = −3,−1, 3

so we get a saddle at (0, 0, 2kπ), k ∈ Z. Similarly, when n is odd, we find that
its eigenvalues are

λ = −3, 1, 3

which is also a saddle. Thus, we get a saddle at (0, 0, nπ) for all n ∈ Z.
At (1, 1, nπ), we get

D2f(1, 1, nπ) =

 6 −3 0
−3 6 0
0 0 (−1)n+1



By observation, we find that ~e3 =

0
0
1

 is an eigenvector with λ = (−1)n+1.

Then, the two eigenvalues are eigenvalues of

[
6 −3
−3 6

]
. Since its trace is 12
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and determinant is 27, its characteristic equation is given by

λ2 − 12λ+ 27 = 0.

So we find that two other eigenvalues are λ = 3, 9. Therefore, (1, 1, (2k + 1)π)
is a local minima, and (1, 1, 2kπ) are saddles.

Example 5.3.3. Consider

f(x, y) = x2 + y4

We find that

∇f(x, y) =

[
2x
4y3

]
so we get only one critical point, (x, y) = (0, 0). Ntice that

D2f(x, y) =

[
2 0
0 12y2

]
so D2f(0, 0)

[
2 0
0 0

]
So we get λ = 2, 0. Since the quadractic doesn’t dominate the remainder, we
call this a degenerate case.

Still, f(0, 0) < f(x, y) for all (x, y) 6= (0, 0) so its a minima even if the
Hessian test doesn’t tell us so.

Example 5.3.4. Consider

g(x, y) = x2 − y4

This has the same second order Taylor expansion as the previous example but
has a different ramainder, R2 = −y4. This is a degenerate saddle.

Notice that for the converse, eigenvalues don’t have to be strictly larger
or smaller than 0. In other words, if ~a is a local minima, then ~a is a critical
point and all the eigenvalues of D2f(~a) must be greater than equal to 0 (not
necessarily strictly greater than 0).
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6 Calculus of Variations

6.1 Single variable

In this section, we look at extremal problems, i.e. maxima, minima, and saddle
points, where the unknown is a function (of one or several variables) which
should optimize some real-valued expression.

Example 6.1.1. Set [a, b] ⊂ R and choose values c, d ∈ R. Consider all C2

functions, u(x), joining P1 = (a, c) and P2 = (b, d), i.e. u(a) = c and u(b) = d.
Among all C2 curves, u(x), connecting P1 to P2, find the one with shortest
arclength.

Let ~c(t) = (t, u(t)). Then, we have

‖~c ′(t)‖ =
√

1 + u′(t)2.

This allows us to compute the arclength:

I(u) =∈ba
√

1 + u′(x)2dx.

Now, call A = {u : [a, b]→ R|u ∈ C2, u(a) = c, u(b) = d}. Then, I : A → R is a
function of functions, or functional. We want to minimize I(u) over all u ∈ A.

Example 6.1.2. For the same class A of functions, take u ∈ A and rotate
around the x axis, creating a surface of revolution. Which y = u(x) generate
the surface of least area?

This time, we let

I(u) = 2π

∫ b

a

u(x)
√

1 + u′(x)2dx.

A function which is a local minima of this I(u) is called a minimal surface

Example 6.1.3. Find y = u(x) for which one object sliding along the curvature
from point P1 to P2 in the shortest time (with gravity).

For this problem, it is convenient to chose P1 = (0, 0). Then, we want to
minimize

I(u) =

∫ b

0

√
1 + u′(x)2√
2g(u(x))

dx

So the idea is to think of u as vectors and use analogy to f(~a). Recall that
a local maxima or minima of a function g(t) = f(~a+ t~v) should have a critical
point at t = 0:

0 = g′(0) = Df(~x)~v,

for all directions ~v. We can apply the same idea for I(u). We assume u is a
local minima or maxima for I(u), and let g(t) = I(u+ tv), where v is a function
which creates variation of u.
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Problem is that we minimize (or maximize) under the assumption that u
connects P1 to P2, i.e. (i + tv) ∈ a is required and end points cannot change.
So we insist that v ∈ C1 and v(a) = v(b) = 0.

Now, call A0 the set of all v(x) (notice that A0 is a vector space). Then, if
g(t) = I(u+ tv) and I(u) has an extreme value, we get

0 = g′(0) =
d

dt
(I(u+ tv))

∣∣∣∣
t=0

.

This equation is called the first variation and must hold for all variations, v ∈
A0 = {v ∈ C1|v(a) = v(b) = 0}.

Example 6.1.4. Solve example 6.1.1.

We had I(u) =
∫ b
a

√
1 + u′(x)2dx. Then, we have

g′(0) =
d

dt
(I(u+ tv))

∣∣∣∣
t=0

=
d

dt

(∫ b

a

√
1 + (u′ + tv′)2dx

)∣∣∣∣∣
t=0

=

∫ b

a

d

dt

√
1 + (u′ + tv′)2dx

∣∣∣∣∣
t=0

=

∫ b

a

1

2

(
1 + (u′ + tv′)2

)−1/2 · 2(u′ + tv′) · v′dx

∣∣∣∣∣
t=0

=

∫ b

a

u′(x)v′(x)√
1 + u′(x)2

dx = 0,

for all v ∈ A0. So we can call DI(u)v = 0 its critical point equation.
Now we want to express the critical point equation in terms of v(x) instead

of v′(x). To do so, we are going to integrate by parts:

∫ b

a

u′(x)v′(x)√
1 + u′(x)2

dx =
u′√

1 + (u′)2
v(x)

]b
a

−
∫ b

a

d

dx

(
u′√

1 + (u′)2

)
v(x)dx

=

∫ b

a

− d

dx

(
u′√

1 + (u′)2

)
v(x)dx

= 0

Notice that the equation holds for all v ∈ A0. This implies that the derivative
of u′/

√
1 + (u′)2 must be identically equal to 0 on [a, b] by the following lemma:

Lemma 6.1 (The Fundamental Lemma of the Calculus of Variations). Assume

h(x) is continuous on [a, b] and
∫ b
a
h(x)v(x)dx = 0 for all v ∈ A0. Then,

h(x) ≡ 0 on [a, b].
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Proof. Assume
∫ b
a
h(x)v(x)dx = 0 for all v ∈ A0. Let h(x0) 6= x0 for some x0

and assume that h(x) > 0 on an interval (α, β), which contains x0.
Now, choose v(x) with v(x) > 0 in (α, β) and zero outside. Then, we have

h(x)v(x) =

{
> 0 in (α, β)

= 0 outside (α, β)

So

0 =

∫ b

a

h(x)v(x)dx

=

∫ β

α

h(x)v(x)dx > 0,

yielding a contradiction. Therefore, h(x) = 0 for all x ∈ [a, b].

Going back to the critical point equation, we get a second order ODE, which
is also referred to as the Euler-Lagrange Equation:

− d

dx

(
u′√

1 + (u′)2

)
= 0

Then, we get
u′√

1 + (u′)2
= C,

where C is a constant. Solving, we find that u′(x) = C1 = ±
√
C2/(1− C2),

which yields
u(x) = C1x+ C2.

Therefore, we can conclude that a straight line is the path of least arc length.

Example 6.1.5. Solve example 6.1.2.

We were given

I(u) = 2π

∫ b

a

u(x)
√

1 + (u′(x))2dx

Notice that this functional has the form of

I(u) =

∫ b

a

F (u′, u, x)dx,

where F : R3 → R. For surface area, we have F (p, u, x) = 2πu(1 + p2)
In general, the first variation is given by

0 =
d

dt
(I(u+ tv))

∣∣∣∣
t=0

=
d

dt

(∫ b

a

F (u′(x) + tv′(x), u(x) + tv(x), x)dx

)∣∣∣∣∣
t=0

=

∫ b

a

(
∂F

∂p
v′(x) +

∂F

∂u
v(x)

)
dx
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where p = u′(x) + tv′(x). Now, we apply integration by parts to obtain∫ b

a

(
∂F

∂p
v′(x) +

∂F

∂u
v(x)

)
dx =

∂F

∂p
v(x)

]b
a

−
∫ b

a

[
d

dx

(
∂F

∂p

)
v − ∂F

∂u
v

]
dx

=

∫ b

a

[
d

dx

(
∂F

∂p

)
− ∂F

∂u

]
vdx = 0

Then, by the Fundamental Lemma of the Calculus of Variation, we get

d

dx

(
∂F

∂p
(u′(x), u(x), x)

)
− ∂F

∂u
(u′(x), u(x), x) = 0,

which is the general solution to the Euler-Lagrange Equation.
Here, we also present an alternate derivation of a general solution to the

Euler-Lagrange equation. Assume F = F (p, u) but not explicitly a function of
x. Then, we can use the following trick. Notice that

d

dx

[
∂F

∂p
(u′, u)u′(x)− F (u′, u)

]
=

d

dx

(
∂F

∂p

)
u′ +

∂F

∂p
u′′ −

(
∂F

∂p
u+

∂F

∂u
u′
)

=

[
d

dx

(
∂F

∂p

)
− ∂F

∂u

]
u′ = 0

Thus, by integrating the last equation, we get

∂F

∂p
(u′, u)u′ − F (u′, u) = C

Now, we apply this to the surface area equation. Since F (p, u) = 2πu
√

1 + p2,
we have

C =
∂F

∂p
(u′, u)u′ − F (u′, u)

= 2πu
u′√

1 + (u′)2
− 2πu

√
1 + (u′)2

= 2π

(
u√

1 + (u′)2

)
By squaring both sides, we get

C2

4π2
=

u2

1 + (u′)2

u′ =

√
u2

c21
− 1
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Since this is a separable equation, we can solve it by substituting u/c1 = cosh θ:∫
du√

u2/c21 − 1
=

∫
1dx∫

c1 sinh θ

sinh θ
dθ = x+ c2

c1 cosh−1
(
u

c1

)
= c1θ = x+ c2

Therefore, we get

u(x) = c1 cosh

(
x+ c2
c1

)
We call this surface of revolution a Catenoid – a minimal surfaces!

Example 6.1.6 (The brachistochrone). A brachistochrone is a curve on which
motion downward from P1 to P2 travels in least time.

To find the brachistochrone curve, we first write the function we want to
minimize:

I(u) =

∫ b

0

√
1 + (u′(x))2√

2gu(x)
dx,

for u ∈ A. We can rewrite this as

F (p, u) =

√
1 + p2√
2gu

.

Since this is of the same special form, we can use the integrated form of the
Euler-Lagrange equation!

C =
∂F

∂p
(u′, u, x)u′ − F (u′, u)

=
u′√

1 + (u′)2
√

2gu
u′ −

√
1 + (u′)2s√

2gu

=
−1√

1 + (u′)2
√

2gu

Now, we take the reciprocal and take the square on both sides:

u(1 + (u′)2) =
1

2gc2
= k

We get a separable first order ODE. Unfortunately, the integral needed cannot
expressed in closed form. However, we can still write it as a parametric curve:{

x = k
2 (t− sin t)

y = k
2 (1− cos t)

, t ∈ R
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Notice that (sin t, cos t) describes a circle whereas (t, 1) describes a horizontal
motion to the right with constant speed of 1. So we get a cycloid.

Notice that

u′(x) =
dy

dx
=

dy

dt
dx

dt

=
sin t

1− cos t

Then,

u(1 + (u′)2) =
k

2
(1− cos t)

(
1 +

(1− cos2 t)

(1− cos t)2

)
= k

6.2 Multi-variable

We wish to expand the idea to a function of several variables.

Definition 6.1 (Closure). Let D be a bounded, open set in Rn with smooth
boundary ∂D (∂D is a closed curve for D ⊂ R2 and is a surface for D ⊂ R3).
Then, D̄ = D ∪ ∂D is the closure of D (a closed set).

For C1 functions u : D̄ ⊂ Rn → R, we define a functional,

I(u) =

∫
D

F (∇u(~x), u(~x), ~x)dx1 · · · dxn

Then, the task is to minimize (or maximize) I(u) over some class of C1 function
u(~x).

For example, all having the same given boundary values,

u(~x) = g(~x),∀~x ∈ ∂D

is the boudary condition where g is a fixed, given function. We’ll do as we did
before: define a class of variations, v(~x), and look at the directional derivative
of I,

d

dt
I(u+ tv)

∣∣∣∣
t=0

= 0.

Let’s start with an example:

Example 6.2.1. In R2, let the bounded, open set D represent an elastic mem-
brane, at rest. Asssume that the membrane is attached to its ∂D in the z = 0
plane, like a drum skin to its rim. We then apply a loading force (i.e., a weight)
to the membrane, represented by f(x, y).

Call u(x, y) the graph of the membrane shape, under loading. According to
linear elasticity theory, the equilibrium shape of the membrane minimizes the
elastic energy functional,

I(u) =

∫∫
D

[
1

2
‖∇u‖2 − f(x, y)u(x, y)

]
dxdy,
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over all u ∈ C1(D̄) with u(x, y) = 0,∀(x, y) ∈ ∂D.
Let A0 = {v ∈ C1(D̄)|v(~x) = 0,∀~x ∈ ∂D}, the class which we’re minimizing

but also the usual class of admissible variations. So, if u, v ∈ A0 and t ∈ R,
then u+ tv ∈ A0. As before, if u is extremal for I(u), then

d

dt
I(u+ tv)

∣∣∣∣
t=0

= 0,∀v ∈ A0

Now, let’s calculate it directly (rather than develop of general formula for
the F (∇u, u, ~x) case):

0 =
d

dt

∣∣∣∣
t=0

∫∫
D

[
1

2
‖∇u+ t∇v‖2 − f(u+ tv)

]
dxdy

=

∫∫
D

d

dt

∣∣∣∣
t=0

[
1

2
‖∇u‖2 + t∇u · ∇v +

t2

2
‖∇v‖2 − fu− tfv

]
dxdy

=

∫∫
D

[
∇u · ∇v − fv + t‖∇v‖2

]∣∣∣∣
t=0

dxdy

So we get

0 =

∫∫
D

[∇u · ∇v − fv]dxdy,∀v ∈ A0

Before we proceed, we introduce integration by parts for multiple integrals:

Lemma 6.2. Suppose D ⊂ Rn (n = 2 or 3) with smooth ∂D, u ∈ C1(D̄), and
~A : ~D → Rn is a C1 vector field. Let ~n be the unit exterio normal vector to ∂D.
Then, ∫∫

D

~A(~x) · ∇udxdy =

∫
∂D

u ~A(~x) · ~nds︸ ︷︷ ︸
line integral

−
∫∫
D

udiv( ~A)dxdy.

In 3D, ∫∫∫
D

~A · ∇udxdydz =

∫∫
∂D

u ~A(~x) · ~ndS︸ ︷︷ ︸
surface integral

−
∫∫∫
D

udiv( ~A)dxdydz

Proof. This comes from combining a product rule,

div
(
~Au
)

= ~A · ∇u+ div( ~A)u

with the Divergence Theorem,∫∫
D

div( ~Au)dxdy =

∫
∂D

( ~Au) · ~nds.

We can then double integrate both sides of the identity and rearrange to get
the integration by parts formula.
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Continuing with our example, integrate
∫∫
D

∇u · ∇vdxdy by parts:

0 =

∫
∂D

v︸︷︷︸
=0

∇u · ~nds−
∫∫
D

vdiv(∇u)dxdy −
∫∫
D

fvdxdy

So for all v ∈ A0, ∆u = div(∇u) is the Laplacian:

0 = −
∫∫
D

[∆u+ f(x, y)] vdxdy

By FLCoV, we find that

∆u(x, y) + f(x, y) = 0

at each (x, y) ∈ D.

Remark. The expansion we did is a Taylor polynomial,

I(u+ tv) = I(u) + tDI(u)v +
1

2
t2
∫∫
D

‖∇v‖2dxdy,

so the solution u is a minimum!
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7 Fourier Series

Fourier series was developed by using solutions to the heat equation of a special
form,

ekt sin(wx),

and linear combinations of functions of this form. Fourier claimed that any
function can be expressed as a series of functions of this form:

∞∑
n=1

sin(wnx),

where wn is a constant. Fourier was right; almost any functions can be expressed
as a series of the following function:

∞∑
n=1

en sin(nw0x)

Notice that f(x) = A sin(wx + ϕ) is a periodic function with period T =
2π/w, i.e. f(x + T ) = f(x) for all x ∈ R. Similarly, if k ∈ N, then fk(x) =
A sin(kwx+ϕ) is also T -periodic. So any linaer combination of these fk(x) are
T -periodic and we can’t represent non-periodic function by Fourier series, at
least not on the whole real line R. So the solution is to restrict to an interval of
length T .

Remark. If f(x) is T -periodic, it’s enough to study it on any interval of length
T , i.e. [a, a+ T ], for any a. By this identity, we get

A sin(wx+ ϕ) = α cos(wx) + β sin(wx),

where A =
√
α2 + β2 and α = A sinϕ, β = A cosϕ.

It will be convenient to use both sin and cos and use a symmetricinterval
of length T = 2L where x ∈ [−L,L]. We follow Fourier and look at integer
multiple of the frequency, w = π/L, i.e.

αk cos

(
kπx

L

)
+ βk sin

(
kπx

L

)
,

where k = 1, 2, 3, . . . as our basic building blocks. Using these building blocks,
we want to answer 2 questions: (1) given a function f(x) on [−L,L], can we
choose the coefficients αk, βk such that f is represented by the following form?

α0 +

∞∑
k=1

(
αk cos

(
kπx

L

)
+ βk sin

(
kπx

L

))
(2) does the series converge to f(x) and in what sense does it converge?
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7.1 Orthogonality

Consider the vector space of all continuous, T -periodic functions:

f : R→ R,

which we call CT . We introduce an inner product (or scalar product) on CT :

Definition 7.1 (Inner product). 〈f, g〉 =
∫ L
−L f(x)g(x)dx

We can easily verity the symmetry and linearity of the inner product. Now,
we also define a norm:

Definition 7.2 (Norm). ‖f‖ =
√
〈f, f〉 =

√∫ L
−L (f(x))

2
dx

Using this definition of norm, we can define distance between f and g as
‖f(x)− g(x)‖, which is equal to square root of area under the graph of (f(x)−
g(x))2.

This definition of norm should have the property that ‖f‖ = 0 iff f(x) = 0.
This is true by an arrangement which is similar to the FLCoU!

With this definition of inner product, we find that{
1, cos

(
kπx

L

)
, sin

(
kπx

L

)
|k = 1, 2, 3, . . .

}
is an orthogonal family of functions. In other words,〈

cos

(
kπx

L

)
, cos

(mπx
L

)〉
= 0

for m 6= k.

7.2 Fourier Series

So the idea is to take a function f(x) defined on an interval of length T = 2L,
typically (−L,L) and associate to it a series of trigonometric function of period
T = 2L:

f(x) ∼ S(x) =
a0
2

+

∞∑
k=1

(ak cos

(
kπx

L

)
+ bk sin

(
kπx

L

)
)

Further, we want to derive the coefficients ak and bk from f(x) and test whether
the series converges or not.

To find the coefficients, we use orthogonality. Define an inner product on
CT , a set of continuous functions with period T :

〈f, g〉
∫ L

−L
f(x)g(x).
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Then, f ⊥ g when 〈f, g〉 = 0 and we find that{
1

2
, cos

(
kπx

L

)
, sin

(
kπx

L

)∣∣∣∣ k = 1, 2, 3, . . .

}
is an orthogonal family on CT . Further, we find that〈

cos

(
kπx

L

)
, cos

(mπx
L

)〉
=

〈
sin

(
kπx

L

)
, sin

(mπx
L

)〉
=

{√
L m = k

0 m 6= k

Recall for vectors u, v ∈ Rn, the projection of v onto u is

v · u
‖u‖2

u.

By analogy, we get

a0 =
1

L

∫ L

−L
f(x)dx

ak =
1

L

∫ L

−L
f(x) cos

(
kπx

L

)
dx

bk =
1

L

∫ L

−L
f(x) sin

(
kπx

L

)
dx

So the Fourier series of f(x) is

S(x) =
a0
2

+

∞∑
k=1

(
ak cos

(
kπx

L

)
+ bk sin

(
kπx

L

))
.

If we look at a partial sum of this series,

Sn(x) =
a0
2

+

n∑
k=1

(
ak cos

(
kπx

L

)
+ bk sin

(
kπx

L

))
,

we find that Sn(x) is a trigonometric polynomial. Then, for large values of n,
this should be a good approximation to f(x) on (−L,L).

Example 7.2.1. Consider f(x) = cos2 x = 1
2 + 1

2 cos(2x) with L = π on [−π, π].
Then, {

a0 = 1, a1 = 0, a2 = 1/2, ak≥3 = 0

bk = 0,∀k
Any function of the form cosm x, sinm x or cosm x sinm x is a trig polynomial
and it can be written as a linear combination using trigonometric identities.

Example 7.2.2. Consider f(x) = x2 for x ∈ (−π, π). Then, we get

bk =
1

π

∫ p

−π
ix2 sin(kx)dx = 0,∀k ∈ N

a0 =
1

π

∫ π

−π
x2dx =

2π2

3

ak =
1

π

∫ π

−π
x2 cos(kx)dx = · · · = 4

k2
(−1)

k
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So

f(x) ∼ S(x) =
π2

3
+

∞∑
k=1

4(−1)k

k2
cos(kx)

Example 7.2.3. Consider f(x) = x2 where x ∈ (0, 2π). This periodic extension
is different from the one above. Especially, this extension is discontinuous at all
2πm. So even in the best case, where the series, S(x), converges everywhere,
it’s discontinuous function at x = 2πm, for all m ∈ Z. Then does it converge
there, and if so, to which values?

We calculuate the Fourier coefficients, remembering that a 2π-periodic func-
tion can be integrated over any interval over length 2π, and give the same
answer. So

ak =
1

π

∫ 2π

0

x2 cos(kx)dx

ak =
1

π

∫ 2π

0

x2 sin(kx)dx

In this case, we get a0 = 8π2/3, ak = 4/k2, bk = −4π/k. Since bk 6= 0, we know
that this function is not symmetric.

Example 7.2.4. Consider f(x) = x where x ∈ (−π, π) and L = π. Then, we
get

ak =
1

π

∫ π

−π
x cos(kx)dx = 0

bk =
1

π

∫ π

−π
x sin(kx)dx

=
2

π

∫ π

0

x sin(kx)dx

=
2

k
(−1)k+1

So as f(x) = x on (−π, π) is odd, we have a sine series:

f(x) ∼ S(x) =

∞∑
k=1

2(−1)k+1

k
sin(kx)

S(x) has discontinuities, f(−π) = −π 6= π = f(π). So what happens at the
discontinuities, x = (2m− 1)π?

S(nπ) =

∞∑
k=1

2(−1)k+1

k
sin(knπ) =

∞∑
k=1

0 = 0

It will be a general fact that at a jump discontinuity, the Fourier series, S(x),
takes the midpoint value. It does not choose the value of f(x) from either the
right or the left at a jump discontinuity.
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7.3 Convergence

Let’s deal with convergence! Start with numerical seris,
∑∞
k=1 ck. The series

converges to a number s if

lim
n→∞

n∑
k=1

ck = s.

We call Sn =
∑n
k=1 ck, the n-th partial sum of the series. If the limit,

limn→∞ Sn, does not exist, we say the series diverges.

Example 7.3.1 (Geometric Series). Consider

∞∑
k=0

rk.

This is exceptional, because we can explicitly calculate Sn for these,

Sn =
1− rn+1

1− r
, r 6= 1.

So series converges if |r| < 1 and diverges if |r| ≥ 1. For r = 1, sn = n and it
diverges as n→∞. When r = −1, Sn = 1− 1 + 1− 1 + 1− · · · ± 1. So

sn =

{
1, if even

0, if odd

and sn diverges. In conclusion, geometric series converges iff |r| < 1 and s =
1/(1− r).

Example 7.3.2 (P-series).
∞∑
k=1

1/kp converges iff p > 1.

Using the comparison teset, we can determine convergence and divergence
of many series using these exmaples.

Definition 7.3 (Absolute and conditional convergence). A series
∑∞
k=1 ck con-

verges absolutely if
∑∞
k=1 |ck| converges. The series converges conditionally if∑∞

k=1 ck converges but
∑∞
k=1 |ck| diverges.

Example 7.3.3 (Alternating series). Consider

∞∑
k=1

(−1)kbk,

with bk → 0 and bk ≥ bk+1 for all k, the series converges conditionally. For
example, if we let bk = 1/k, the alternating series converges but the absolute
series diverges.
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Conditional convergence is delicate and the series converges slowly.
Let’s apply it to Fourier Series. Fourier series are series of functions not just

numbers:

S(x) =
a0
2

+

∞∑
k=1

(ak cos(kx) + bk sin(kx)) =

∞∑
k=0

gk(x).

There are several different (and important) notions of convergence for series of
functions.

Definition 7.4 (Pointwise convergence). For each fixed value of x,
∑∞
k=1 gk(x)

is a numerical series, which converges or doesn’t. If is converges for each indi-
vidual x ∈ [a, b], we say the series converges pointwise.

Example 7.3.4. Consider

∞∑
k=1

(1− x)xk, x ∈ [0, 1].

Then, we get the following partial sums:

Sn =

n∑
k=1

(1− x)xk

= (1− x)

n∑
k=1

xk

If x ∈ [0, 1), the series converges:

lim
n→∞

Sn(x) = (1− x) lim
n→∞

n∑
k=1

xk︸ ︷︷ ︸
1/(1−x)

= 1

However, when x = 1, we have Sn(1) = 0. So at x = 1, the series converges to
0, i.e.

∞∑
k=1

(1− x)xk =

{
1 if x ∈ [0, 1)

0 if x = 1

A series of continuous functions can converge pointwise to a discontinuous
function!7 Fortunately, there is a nice theorem about pointwise convergence of
trigonometric Fourier series, which is easy to apply.

7Also, there are examples for which∫ b

a

( ∞∑
k=1

gn(x)

)
dx 6=

∞∑
k=1

∫ b

a
gn(x)dx.
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We say that f(x) is piecewise C1, or piecewise smooth, on [a, b] if (i) f is
differentiable and f ′(x) is continuous except maybe at finitely many points; (ii)
At each exceptional point, f(x) and f ′(x) have jump discontinuities.8

Theorem 7.1 (Pointwise Convergence Theorem for Trigonometric Fourier Se-
ries). Assume f is a piecewise C1, (2L)-periodic function. Then, its trigono-
metric Fourier Series,

S(x) =
a0
2

+

∞∑
k=1

[ak cos(kx) + bk sin(kx)] ,

converges pointwise at every x ∈ R to

S(x) =
1

2

(
f
(
x+
)

+ f
(
x−
))
,

where
f
(
x+
)

= lim
t→x+

f(t),

f
(
x−
)

= lim
t→x−

f(t).

In other words, if f is continuous, S(x) = f(x). If f(x) jumps, S(x) averages
the jump values.

Remark. Just assuming f(x) is continuous is not enough to calculate that

lim
n→∞

Sn(x) = f(x)

Example 7.3.5. Consider f(x) = x, x ∈ (−π, π). Then,

S(x) =

∞∑
k=1

2(−1)k+1

k
sin(kx)

= x,

if x ∈ (−π, π).

Example 7.3.6. Consider f(x) = x for x ∈ (−π, π), which is extended 2π-
periodically. Then, f(x) is discontinuoous. It takes the value of S((2m−1)π) =
0 and we get the following Fourier series:

S(x) =

∞∑
k=1

2(−1)k+1

k
sin(kx).

Observe that

|bk| =
∣∣∣∣2(−1)k+1

k

∣∣∣∣ =
2

k
.

Since
∑2
k=1 2/k diverges, the series converges conditionally, and bk is an alter-

nating series. So we see how slowly it converges by looking at graphs of Sn, for
large n.

8 Even if f is C1([−π, π]), when we do Fourier Seires, we get 2π-periodic extension of f to
R, which might create discontinuities x = ±π.
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Example 7.3.7. Consider f(x) = x2 with x ∈ (−π, π) extended 2π-periodically.
In this case, the extension is continuous, so S(x) = f(x)∀x ∈ R. Further, we
find that

S(x) =
π2

3
+

∞∑
k=1

4(−1)k

k2
cos(kx).

Then, by looking at the individual terms,

|ak cos(kx)| =
∣∣∣∣4(−1)k

k2
cos(kx)

∣∣∣∣ ≤ 4

k2
,

we find that S(x) converges absolutely for all x ∈ R by the Comparison Test.
Since it converges for all x ∈ R, let’s try some values. First, when x = 0, we

get

π2

3
+

∞∑
k=1

4(−1)k

k2
= 0

So we find that
∞∑
k=1

(−1)k

k2
= −π

2

12

Likewise, when x = π, we find that

∞∑
k=1

1

k2
=
π2

6

This example illustrates a second notion of convergence, uniform conver-
gence.

Theorem 7.2 (Uniform Convergence). Consider S(x) =
∑∞
k=1 gk(x) with x ∈

[a, b]. We say that the series converges uniformly to S(x) if

lim
n→∞

(
max
x∈[a,b]

∣∣∣∣∣S(x)−
n∑
k=1

gk(x)

∣∣∣∣∣
)

= 0.

In other words, for any ε > 0, there is an N for which∣∣∣∣∣S(x)−
n∑
k=1

gk(x)

∣∣∣∣∣ < ε,

whenever n ≥ N .

Theorem 7.3 (Weierstress). Assume gk(x) are continuous on [a, b], where k =
1, 2, 3, . . . .

• M-Test. If |gk(x)| < Mk, for all x ∈ [a, b], and
∑
kMk converges, then∑

k gk(x) converges uniformly on [a, b].
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• If S(x) =
∑
k=1 gk(x) converges uniformly on [a, b], then S(x) is continu-

ous, and ∫ b

a

S(x)dx =

∞∑
k=1

∫ b

a

gk(x)dx

Going back to the examples, the series for f(x) = x does not converge
uniformly because f(x) extended periodically is not continuous, whereas the
series for f(x) = x2 extended periodically does converge uniformly because

|gk(x)| =
∣∣∣∣4(−1)k

k2
cos(kx)

∣∣∣∣ ≤ 4

k2
∀x

Remark. For Fourier Series, we get uniform convergnece if
∞∑
k=1

(|ak|+ |bk|)

converges. In other words, both
∑
k |ak| and

∑
k |bk| must converge.

Example 7.3.8. Consider f(x) = | sinx| with x ∈ (−π, π). Then, we get

bk =
1

π

∫ π

−π
| sinx| sin()ksdx

= 0

a1 = 0

ak =
2

π

(
(−1)k+1 − 1

) 1

k2 − 1

So

S(x) =
2

π
− 4

π

∞∑
j=1

1

4j2 − 1
cos(2jx),

which converges to f(x) by the THeorem.
Since

|a2j | =
∣∣∣∣− 4

π

1

4j2 − 1

∣∣∣∣
=

4

π(4j2 − 1)

<
4

π

1

4j2 − j2
and

∑
1/j2 converges, by the M-Test, the series converges uniformly.

We can now use it to calculate some numerical series. When x = 0, by the
convergence theorem,

0 = f(0) =
2

π
− 4

π

∞∑
j=1

1

4j2 − 1

4

π

∞∑
j=1

1

4j2 − 1
=

1

2
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7.4 Orthogonal functions

So where do orthogonal functions come from?

7.4.1 Gram-schmidt process

Take a linearly independent collection {v1, v2, v3, . . . } in an independent space.
By an iterative proecedure, we can create an orthogoanl collection {u1, u2, u3 . . . }
by projection.

Take u1 = v1. Then,

u2 = v2 −
〈v2, U1〉
‖u1‖2

u1

is orthogonal to u1.

Proof.

〈u1, u2〉 = 〈u1, v2〉 −
〈
u1
〈v2, u1〉
‖u1‖2

u1

〉
= 〈u1, v2〉 −

〈v2, u1〉
‖u1‖2

〈u1, u1〉︸ ︷︷ ︸
‖u1‖2

= 0.

Then, if we already have the following orthogoanl set:

{u1, u2, . . . , uk},

we find that the vector obtained by the following procedure

uk+1 = vk+1 −
k∑
j=1

〈vj+1, uj〉
‖uj‖2

uj

is orthogoanl to the given set and we still get the same span.
A common application is to polynomials, P (x) = a0 + a1x+ · · ·+ anx

n. A
basis of polynomials is {1, x, x2, . . . }. For any choice of inner product, we get
different orthogonal families of polynomials (Legendre, Chebysev, . . . ). If we

take a familiar one, 〈f, g〉 =
∫ 1

−1 f(x)g(x)dx, then P0(x) = 1. In homework,
you’ll also see that P1(x) = x ⊥ P0(x) = 1. Further,

P2(x) = x2 − 〈x
2, P0〉
‖P0‖2

P0 −−
〈x2, P1〉
‖P1‖2

P1

= x2 −
∫ 1

−1 x
2 · 1dx∫ 1

−1 12dx
−
∫ 1

−1 x
3 · 1dx∫ 1

−1 x
2dx︸ ︷︷ ︸

=0

= x2 − 1

3
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To get other families, we have to use different inner product

〈f, g〉 =

∫ 1

−1
f(x)g(x)w(x)dx.

7.4.2 Eigenvalue problems

Theorem 7.4. In Rn, a symmetric matrix, M , has n eigenvectors which for-
man orthogonal basis. In other words, if Mu = λu and Mv = µv with λ 6= µ,
we get 〈u, v〉 = 0.

Proof. Notice that due to symmetry, we get

〈λu, v〉 = 〈Mu, v〉 = 〈u,Mv〉 = 〈u, µv〉

So we get λ〈u, v〉 = µ〈u, v〉. So since λ 6= µ, we conclude that 〈u, v〉 = 0.

Now, consider a vector space V of all C2 functions,

u : [0, L]→ R,

satisfying the boundary condition such as u(0) = 0 and u(L) = 0. Then, we take

te inner product 〈u, v〉 =
∫ L
0
u(x)v(x)dx and linear transformation Mu = u′′(x).

Lemma 7.1. M is symmetric with respect to the inner product on V.

Proof.

〈Mu, v〉 =

∫ L

0

u′′(x)v(x)dx

= u′(x)v(x)|L0 −
∫ L

0

u′(x)v′(x)dx

= −v′(x)u(x)|L0 +

∫ L

0

u(x)v′′(x)dx = 〈u,Mv〉

In Rn, any symmetric linear transformation (i.e. matrix) provides an orthog-
onal basis of eigenvectors of m for Rn. Even though V is infinite dimensional,
it turns out that this is still true in the sense of Fourier series.

Now, this leads us to the eigenvalue problem. We want to u ∈ V, u 6= 0
and λ ∈ R such that Mu = λu. Equivalently, we can find all solutions of an
ODE with the given u(0) = 0 as initial condition and check if they also solve
u(L) = 0. So we have 3 cases:

λ > 0, λ = 0, λ < 0

When λ ≥ 0, there is no nontrivial solution. So let’s consider the case with
λ < 0. Let µ = −λ > 0. Then, u′′ = −µu and the general solution is given by

u(x) = A cos
√
µx+B sin

√
µx.
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Since u(0) = u(L) = 0, we find that

A = 0, µ =

(
kπ

L

)2

.

In other words, we get λ = −(kπ/L)2 with eigenfunction

u = sin

(
kπx

L

)
.

Again, we have an orthogonal family. So given a function, f(x), we can
created an associated Fourier expansion:

f(x) ∼ S(x) =

∞∑
k=1

ckφk(x),

where

ck =
〈f, φk〉
‖φk‖2

.

Then, in what sense are two equal, and does the series converge?

Definition 7.5. Define the partial sums,

Sn(x) =

n∑
k=1

ckφk(x).

We say the series converges in norm if

lim
n→∞

‖Sn − f‖ = 0,

where ‖Sn − f‖ is the usual inner product.

Definition 7.6. We call the family {φk(x)} complete if for all continuous f ,
the series converges to f in norm, i.e. {φk(x)} forms a kind of orthogonal basis
for all continuous f(x) on [a, b].

By simple calculation, we can show that

‖f − Sn‖2 = ‖f‖2 −
n∑
k=1

c2k ‖φk‖
2
.

If we have convegence in norm, then as we take the limit as n goes to infinity,
we get

0 = ‖f‖2 −
∞∑
k=1

c2k ‖φk‖
2

⇐⇒
∞∑
k=1

c2k ‖φk‖
2

= ‖f‖2.

We call this Parseval’s Identity.
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Theorem 7.5 (Parseval’s Theorem). Suppose f(x) is defined on [−π, π] and∫ π

−π
(f(x))

2
dx <∞.

Then, the trigonometric Fourier Series of f(x),

S(x) =
a0
2

+

∞∑
k=1

(ak cos(kx) + bk sin(kx))

converges to f(x) m-norm on [−π, π]. In addition,∫ π

−π
(f(x))

2
dx = π

[
a20
2

+

∞∑
k=1

(
a2k + b2k

)]

Example 7.4.1. Consider f(x) = x with x ∈ [−π, π]. Then, we have

ak = 0, bk =
2

k
(−1)k+1.

Thus, we get

π

∞∑
k=1

4

k2
=

∫ π

−π
x2dx =

2

3
π3

∞∑
k=1

1

k2
=
π2

6
.

Example 7.4.2 (The vibrating string). Consider a string in a guitar, piano, etc.
with length L. Suppose that the string is attached at x = 0, L. Let y = u(x, t)
be vertical position of the string at position x and time t (u(L, t) = u(x, t) = 0).
Then, the wave equation is given by

∂2u

∂t2
= c2

∂2u

∂x2
,

where c is a constant which depends on the density and tension of the string.
We can solve this using Fourier Series! Then, the solution is given by

u(x, t) =

∞∑
k=1

ak(t) sin

(
kπx

L

)
.

with

ak(t) = Ak cos

(
kπc

L
(t+ φk)

)
.

Each term in the solution is a simple standing wave, associated to φk, which
produces sound of a single pure frequency:

wk =
kc

2L
, k = 1, 2, 3, . . .
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Further, the k = 1 case is the fundamental tone, w1 = c/2L, the lowest note
produced. For k = 2, 3, 4, . . . , we get wk = kw, the overtones.

If w1 = 440 Hz, we have middle A4. Then, w2 = 880 Hz gives A5 and
w3 = 1320 Hz gives E6. Likewise, w4 is A6 and w5 is C#

7 . Then, we can get
other notes by changing L (fingerboard).

For clarinet, we get a different orthogonal family!

φk(x) = cos
(

(2k − 1)
πx

4L

)
.
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