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1 Set theory

1.1 Reveiew

Definition 1.1. Set is a collection of distinct objects.

Here are some properties of a set:

• {apple, 2, {3}} is a set.

• If x is in A, we write x ∈ A. If not, we write x /∈ A.

• ∅ is an empty set.

• Note that order or repeated elements are not important: {1, 2, 3} =
{3, 1, 2} and {1, 1, 1, 2, 2, 3} = {1, 2, 3}.

Definition 1.2. Let A and B be sets. B is a subset of A if for all x ∈ B, x ∈ A
and we write B ⊆ A. B is a proper subset of A if B is a subset of A but B 6= A
and we write B ⊂ A.

Theorem 1.1. A and B are equal if and only if B ⊆ A and B ⊆ A.

Example 1.1.1.

• N is a set of natural numbers: {0, 1, 2, 3, . . . }.

• Z is a set of integers: {. . . ,−2,−1, 0, 1, 2, . . . }.

• Q is a set of rational numbers.

• R is a set of real numbers.

• C is a set of complex numbers.

Definition 1.3. Universal set U contains all elements.

Let A and B be sets. Then, we can define the following:

Definition 1.4 (Intersection). A ∩B = {x |x ∈ A and x ∈ B}.

Definition 1.5 (Union). A ∪B = {x |x ∈ A or x ∈ B}.

Definition 1.6 (Complement). A′ = {x |x ∈ U and x /∈ A}.

Definition 1.7 (Set difference). A−B = {x |x ∈ A but x /∈ B}.

Definition 1.8 (Cartesian product). A×B = {(a, b) | a ∈ A, b ∈ B}.

Example 1.1.2. Let A = {0, 1} and B = {dog, cat}. Then,

A×B = {(0,dog), (0, cat), (1,dog), (1, cat)}

Theorem 1.2 (DeMorgan’s Laws). Let A and B be sets. Then,
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• (A ∪B)′ = A′ ∩B′.

• (A ∩B)′ = A′ ∪B′.

Proof. To show that (A∩B)′ = A′∪B′, we want to show that (A∩B)′ ⊆ A′∪B′
and A′ ∪B′ ⊆ (A ∩B)′.

First, let x ∈ (A ∩ B)′. Then, X /∈ (A ∩ B). So either x /∈ A or x /∈ B.
If x /∈ A, then x ∈ A′. Since A′ ⊂ A′ ∪ B′, x ∈ A′ ∪ B′. If x ∈ B′, then
x ∈ B′ ⊂ A′ ∪B′. Therefore, x ∈ A′ ∪B′.

Now, we want to prove the opposite direction. Take x ∈ A′ ∪B′. So x ∈ A′
or x ∈ B′. Thus, x /∈ A or x /∈ B. In either case, x /∈ (A ∩ B). Therefore,
x ∈ (A ∩B)′.

1.2 Equivalence relation

Definition 1.9. Let A and B be sets. Then, a relation is any subset S ⊆ A×B

Example 1.2.1. Let A = {0, 1} and B = {dog, cat}. Then,

S = {(0,dog), (1, cat)} ⊆ A×B

Functions can give you relations:

Example 1.2.2. Let f : R → R where f(x) = x2. Then, the following is a
relation:

{(x, f(x)) |x ∈ R} ⊆ R× R

Example 1.2.3. Let X be a set of all McMaster students. Then,

R = {(x, y) |x has same height as y} ⊆ X ×X

Definition 1.10. Let X be a set. An equivalance relation on X is a set R ⊆
X ×X such that

• (x, x) ∈ R for all x ∈ X (reflexive)

• If (x, y) ∈ R and (y, x) ∈ R (symmetric)

• If (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R (transitive)

Example 1.2.4. Example 1.2.1 is not an equivalence relation since A 6= B.

Example 1.2.5. Example 1.2.2 is not an equivalence relation since (2, 2) /∈
{(x, x2) |x ∈ R}.

Example 1.2.6. Example 1.2.3 is an equivalence relation.

• (refective) For any student x ∈ X, x has the same height as x, so (x, x) ∈
R.

• (symmetric) Suppose (x, y) ∈ R so x and y have the same height. But y
and x have the same height so (y, x) ∈ R.
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• (transitive) if (x, y) ∈ R and (y, z) ∈ R, then x and y have the same height
and y and z have the same height. So x and z have the same height, i.e.
x, z ∈ R.

Remark. Sometimes, we write x ∼ y to mean (x, y) ∈ R.

Example 1.2.7. Prove that the following is an equivalence relation

R = {(x, y) |x = y} ⊆ Z× Z

Proof.

• (reflective) For any x ∈ Z, x = x and (x, x) ∈ R.

• (symmetric) If x ∼ y then x = y so y = x, and y ∼ x.

• (transitive) If x ∼ y and y ∼ z, then x = y = z, so x ∼ z.

Definition 1.11. Fix a positive integer n > 0. We say r is congruent to s
modulo n if n divides r − s, i.e. (r − s) = nl for some integer l. We write

r ≡ s mod n

Example 1.2.8. Let n = 7. Then, 22 ≡ 8 mod 7 since 7 divides 22 − 8.
However, 22 6≡ 10 mod 7 since 7 does not divide 23− 10 = 13.

Example 1.2.9. Congruent definition is an equivalence relation on Z:

R = {(r, s) | r ≡ s mod n} ⊆ Z× Z

Proof.

• (reflexive) For all r ∈ Z, n divides r − r = 0. So r ≡ r mod n for all r.
So (r, r) ∈ R.

• (symmetric) Suppose (r, s) ∈ R so r − s = nl for some l. We multiply
both sides by (−1) to obtain

(s− r) = (−1)(r − s) = (−1)(nl) = n(−l).

So n divides s− r and (s, r) ∈ R.

• (transitive) If (r, s) ∈ R and (s, t) ∈ R, then r − s = nl and s − t = nk.
But then

(r − t) = (r − s) + (s− t) = nl + nk = n(l + k),

so (r, t) ∈ R.
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Definition 1.12. If R is an equivalence relation on X, and x ∈ X, the equiv-
alence class of x is

[x] = {y | (x, y) ∈ R}

Example 1.2.10. Consider

R = {(x, y) |x and y have the same height}.

Then,
[Abby] = {all people who have same height as Abby}.

Example 1.2.11. Consider

R = {(x, y) |x = y} ⊆ Z× Z.

Then,
[42] = {42}.

Example 1.2.12. Consider

R = {(r, s) | r ≡ s mod 5} ⊆ Z× Z.

Then,
[3] = {. . . ,−7,−2, 3, 8, 13, 18, . . . }.

Definition 1.13. A partition P of set X is a collection of sets, X0, X1, X2, . . .
such that

X =
⋃
i

Xi

and Xi ∩Xj = ∅ for all i 6= j.

Example 1.2.13. In Example 1.2.12, we have

Z = [0] ∪ [1] ∪ [2] ∪ [3] ∪ [4]

Theorem 1.3. If R is an equivalence relation on X, then the distinct equiva-
lence classes form a partition of X.

Proof. For any x ∈ X, x ∼ x so x ∈ [x]. Thus,

X =
⋃
x∈X

[x].

Given x, y ∈ X, we want to show that [x] = [y] or [x] ∩ [y] = ∅. Suppose
that [x] ∩ [y] 6= ∅. Let z ∈ [x] ∩ [y]. So x ∼ z and y ∼ z. Let a ∈ [x]. Then,
x ∼ a so a ∼ x, and x ∼ z and z ∼ y. So a ∼ y. Thus y ∼ a, and thus a ∈ [y].
So [x] ⊆ [y].

Same argument shows [y] ⊆ [x]. So have [x] ∩ [y] = ∅ or [x] = [y]. So
considering only distinct classes, we have a partition:

X = [x0] ∪ [x1] ∪ · · · ,
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1.3 Well ordering principle and division algorithm

Theorem 1.4. (First principle of mathematical induction) Set S(n) be a state-
ment about integer n ∈ N and suppose S(n) is true for some n0 ≥ 1. If for all
integers k ≥ 0, if S(k) is true implies S(k+ 1) is true, then S(n) is true for all
n ≥ n0.

Theorem 1.5 (Second principle of mathematical induction). Let S(n) be a
statement foor integers n ∈ N and assume S(n0) is true. If S(n0), S(n0 +
1), . . . , S(k) imply that S(k + 1) is true, then S(n) is true for all n ≥ n0.

Definition 1.14 (Well ordering property). Every nonempty set of positive in-
tegers has a smallest element.

Remark. Well ordering property becomes false once you include negative values.

Lemma 1.1. Principle of mathematical induction implies 1 is the smallest in-
teger.

Theorem 1.6. Principle of mathematical induction implies well ordering prop-
erty.

Proof. Let S be a nonempty set of positive integers. If 1 ∈ S, then by above
lemma, the set S has a smallest element. Assume that if S is a set that containes
1 ≤ k ≤ n, then S satisfies the well ordering property. Let S be any set that
contains an integer 1 ≤ k ≤ n + 1. If S does not contain any elements smaller
than n+1, n+1 is the smallest element. If S does contain an integer k < n+1,
then by induction step, we have already shown that S has well ordering perperty.
By induction, all S satisfy well ordering property.

Remark. Induction and well ordering property are equivalent.

Recall long division. If we divide 304 with 14, we get 304 = 14(21) + 10.
Here, we call 304 a dividend, 14 a divisor, 21 a quotient, and 10 a remainder.
Now, we want to know whether this process stops and whether the answer is
unique:

Theorem 1.7 (Division algorithm). Let A and B be integers with b > 0. Then,
there exists unique integers q and r such that

a = bq + r with 0 ≤ r < b

Proof. To prove that the above theorem is true, we have to show (1) existence
and (2) uniqueness.

First, let S = {a − bk | a − bk ≥ 0}. If 0 ∈ S, then there is a k such that
a− bk = 0 ⇐⇒ a = bk. Then, we can let q = k and r = 0. If 0 /∈ S, we want
to use the well ordering principle. We need to check that S 6= ∅.

• If a < 0, then a− ba = a(1− b) > 0, since b > 0. So S 6= ∅.

• If a = 0, then 0− b(−1) > 0, so S 6= ∅.
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• If a > 0, then a− b(0) > 0, so S 6= ∅.

By the well ordering property, there exists a smallest element say r in S, i.e.
there is a q such that a− bq = r.

We claim that we also have 0 ≤ r < b. If r ≥ b,

r − b = (a− bq)− b = a− b(q + 1) ≥ 0.

So r− b ∈ S and r− b is smaller than r, the smallest element of S. So we must
have 0 ≤ r < b.

Now, suppose there was q, r, q′, r′ such that{
a = bq + r, 0 ≤ r < b

a = bq′ + r′, 0 ≤ r < b

So bq + r = bq′ + r′ =⇒ bq − bq′ = r′ − r. Note that

−b < −r < r′ − r < r′ < b.

Thus,
−b < bq − bq′ < b.

If we divide both sides by b, we get−1 < q−q′ < 1. So we find that q−q′ = 0.

Definition 1.15. a divides b if there exists m such that b = am. We write a|b.

Example 1.3.1. 3|12 since 12 = 3 · 4.

Definition 1.16. d is a common divisor of a and b if d|a and d|b.

Example 1.3.2. 2 is a common divisor of 12 and 18.

Definition 1.17. d is the greatest common divisor of a and b if (1) d is a
common divisor of a and b and (2) if d′|a and d′|b, then d′|d. We write d =
gcd(a, b).

Example 1.3.3. 6 = gcd(12, 18).

Definition 1.18. a and b are relatively prime if gcd(a, b) = 1.

Remark. For any integer b, b|0 since 0 = b · 0. Furthermore, gcd(b, 0) = |b|.

Theorem 1.8. Let a and b be non-zero integers. Then, there exists r and s
such that gcd(a, b) = ra+ sb.

Example 1.3.4. 6 = gcd(12, 18) = 12(−1) + 18 · 1

Proof. Let S = {am+bn |m,n ∈ Z, am+bn > 0}. If a < 0, then a(−1)+b(0) >
0, so S 6= ∅. If a > 0, then a(1) + b(0) > 0 so S 6= ∅. By the well ordering
property, there exists a smallest element in S, say d. So d = am+ bn for some
m+ n.
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Now, we want to prove that d = gcd(a, b). First, by the division algorithm,
there exists q and r such that a = dq + r with 0 ≤ r < d. If r > 0, then,

r = a− dq = a− (am+ bn)q

= a− amq − bnq
= a(1−mq) + b(−nq) > 0.

Then r ∈ S and r < d but d is the smallest element of S. So r = 0, i.e.
a = dq + 0. So d|a. Sampe proof shows d|b.

Now, suppose that d′|a and d′|b. So a = d′a′ and b = d′b′. But then

d = am+ bn

= d′a′m+ d′b′n

= d′(a′m+ b′n)

So d′|d. Hence, gcd(a, b) = d.

Remark. If gcd(a, b) = 1, then 1 = as+ br for some s and r.

Lemma 1.2. Suppose a, b, q and r such that a = bq + r. Then, gcd(a, b) =
gcd(b, r).

Proof. Let d = gcd(a, b) and e = gcd(b, r). Now, d|a and d|b, so a = da′ and
b = db′. Since r = a− bq, we have r = da′ − db′q = d(a′ − b′q). So d|r and d|b,
so d ≤ gcd(b, r) = e.

Now, e|b and e|r. So b = eb∗ and r = er∗. So a = bq + r = eb∗q + er∗ =
e(b∗q + r∗). So e|b and e|a. So e ≤ d. Hence d ≤ e ≤ d, i.e. e = d.

Now, we introduce the Euclidean algorithm to find the greatest common
divisors of two integers: To compute gcd(a, b), repeatedly apply divison algo-
rithm:

a = bq1 + r1

b = r1q1 + r2

r1 = r2q3 + r3

...

rn−2 = rn−1qn + rn

rn−1 = rnqn+1 + 0

Then, the last non-zero remainder, rn is the greatest common divisor.

Remark. This algorithm is guaranteed to stop because rn is a monotonically
decreasing sequence, i.e. b > r1 > r2 > r3 > · · · ≥ 0. At some point, we must
reach rn+1 = 0 for some n.

Example 1.3.5. We want to find gcd(234, 96). Note 234 = 96 ·+42. Note that
gcd(234, 96) = gcd(96, 42). Then, since 96 = 42 · 2 + 12, we have gcd(96, 42) =
gcd(42), 12. Likewise, we can continue to obtain gcd(234, 96) = 6.
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Remark. We can reverse this algorithm to find s and t such that gcd(a, b) =
sa+ bt. Notice that

234 = 96(2) + 42

96 = 42(2) + 12

42 = 12(3) + 6

42 = 234 + 96(−2) 12 = 96 + 42(−2)

6 = 42 + 12(−3)

So
6 = 42 + [96 + 42(−2)](−3)

= 42(7) + 96(−3)

Then,
6 = [234 + 96(−2)](7) + 96(−3)

= (234)(7) + 96(−3) + 96(−3)

= 234(7) + 96(−17)

Definition 1.19. A positive integer p > 1 is prime if its only divisions are 1
and p. Otherwise, a number is composite.

Example 1.3.6. 7 is a prime.

Lemma 1.3. Let a and b be integers and p a prime. If p|ab, then p|a or p|b.
This statement is false when p is not a prime.

Proof. If p 6 |a, we want to show that p|b. If p 6 |a, then gcd(a, p) = 1. So there
exists s and t such that 1 = as + pt. Then, we have b = abs + pbt. Since p|ab,
we have ab = pk. So,

b = pks+ pbt = p(ks+ bt).

Therefore, p|b.

Theorem 1.9 (Fundamental theorem of arithmetic). Let n > 1 be any integer.

n = p1p2 · · · pk,

where pi is a prime (not necessarily distinct). Furthermore, this decomposition
is unique in the following sense. If n = q1 · · · ql is another production of primes,
then k = l and after relabelling, pi = qi.

Proof. (Existence) Let

S = {a ∈ Z | a > 1 and a does not have a primary decomposition}.

If S 6= ∅, then by the well ordering principle, there is a smallest a ∈ S. Note
a is not a prime because if a is prime then a = a is a factorization. So a is
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composite and a = bc with 1 < b, c < a. However, b, c /∈ S so they have a
factorization:

b = p1 · · · pl
c = q1 · · · qk

But then a = p1 · · · plq1 · · · qk. So a /∈ S, This is a contradiction and S = ∅.
(Uniqueness). Suppose

n = p1 · · · pk = q1 · · · ql

Since p1|n, p1|q1 · · · ql. So p1|qi for some i by the Lemma. Since qi is prime and
p1 > 1, then p1 = qi. Then, we do a relabelling so that qi is q1. So we have

p1p2 · · · pk = q1q2 · · · ql
=⇒ p2 · · · pk = q2 · · · ql

We repeat the process. If k > 1, we would end with

pl+1pl+2 · · · pk = 1.

Likewise, we would end with a similar equation if k < l. Both cases are impos-
sible because pi, qi > 1. So k = l and pi = qi for all i.

Theorem 1.10. There exists an infinite number of primes.

Proof. Suppose only primes are p1, p2, · · · , pn. Let

P = p1p2 · · · pn + 1.

Since P > p1, · · · , pn, P is not a prime. So P is a composite number by
FTA, some pi must divide P . Since P − p1p2 · · · pn = 1, then pi|1, yielding
contradiction. So there must be infinite number of primes.

Example 1.3.7. Prove that if gcd(a, b) = 1 and a|bc, then a|c.

Proof. Beacuse gcd(a, b) = 1, there exists integers s and t such that as+ bt = 1.
This follows from theorem 2.10. If we multiply both sides by c, we get

acs+ bct = c

Since a|bc, bc = ak for some integer k. After substitution, we have

c = acs+ akt.

But this means
c = a(cs+ kt).

So a|c, as desired.
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2 Groups and rings

2.1 Group theory

Before we begin, we’re going to look at sets with extra structure.

Example 2.1.1 (Integer equivalence classes). Let n = 6. Consider the distinct
equivalence classes modulo 6:

R = {(a, b) | a ≡ b mod 6} ⊆ Z× Z

Then,
[0] = {. . . ,−6, 0, 6, . . . }
[1] = {. . . ,−5, 1, 7, . . . }
[2] = {. . . ,−4, 2, 8, . . . }
[3] = {. . . ,−3, 3, 9, . . . }
[4] = {. . . ,−2, 4, 10, . . . }
[5] = {. . . ,−1, 5, 11, . . . }

We denote the six disctinct equivalence classes by

Z6 = {[0], [1], [2], [3], [4], [5]}.

Usually, we write
Z6 = {0, 1, 2, 3, 4, 5}.

In general, for any n > 1, let

Zn = {0, 1, 2, . . . , n− 1}.

Then, we can add and multiply elements of Zn:

a+ b = (a+ b) mod n

ab = (ab) mod 6

In fact, for any a ∈ Z and n > 1, if a = nq + r with 0 ≤ r < n, then [a] = [r].
Equivalently, a = r mod n and a = r in Zn.

We can look at some other properties of addition and multiplication in Zn:

• Addition and multiplication commute

• Addition and multiplication are associative

• There are additive and multiplicative identities

• For every element in Zn, there exists an additive inverse.

• Multiplication is distributive over additon

• If gcd(a, n) = 1, then there exists an integer b such that ab = 1 mod n.
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Consider a square cut in the plane. We can flip it, rotate it, and but not
stretch it, and then put it back in the original spot. Then, we have 8 operations.

Let R0 be rotating 0◦, R90 rotating 90◦, R180 rotating 180◦, and R270 ro-
tating 270◦. Then, H will be a flip on the horizontal axis, V on the vertical
axis, D1 on the main-diagonal, and D2 on the anti-diagonal. Note that you can
perform one operation, then followed by another, and end back up with another
known operation. For example H,R270 is equivalent to D1. Note that order is
important.

We want to think of these as functions, i.e., each function maps a square to
itself. Let

D4 = {R0, R90, R180, R270, V,H,D1, D2}.

We call is a dihedral group and it has the following properties:

• Operations of composition is closed.

• R0 is an identity element.

• Each element A ∈ D4 has an inverse, i.e., we can reverse it to R0.

• The operation is associative.

In fact, D4 forms a group and those are the four properties that all groups must
have.

Now, we want to formally define a group.

Definition 2.1. Given any set G, a binary operation ◦ is any function

◦ : G×G→ G

that maps a pair (a, b) ∈ G×G to an element a ◦ b.

Example 2.1.2. + on Z is a binary operation

+ : Z× Z→ Z

. Likewise, multiplication is also a binary operation.

Example 2.1.3. Composition of functions on D4 is a binary operation:

◦D4 ×D4 → D4

Definition 2.2. A group (G, ◦) is a set G with a binary operation ◦ such that

• (associative) a ◦ (b ◦ c) = (a ◦ b) ◦ c.

• (identity) there exists an e ∈ G such that a ◦ e = e ◦ a = a for all a ∈ G.

• (inverse) for all a ∈ G exists a−1 ∈ G such that a ◦ a−1 = a−1 ◦ a = e.
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Definition 2.3. If a group G satisfies commutativity,

a ◦ b = b ◦ a, ∀a, b ∈ G,

then G is called abelian.

Example 2.1.4. D4 is a group where the binary operation is composition of
functions. D4 is not abelian since

D1 ◦H 6= H ◦D1

Example 2.1.5. Consider

Z = {. . . ,−2,−1, 0, 1, 2, . . . }.

There are two operations on Z: addition and multiplication. Z with addition is
an abelian group with identity 0. However, Z with multiplication is not a group
because it doesn’t have an inverse.

Example 2.1.6. Rationals, real numbers, and complex numbers are all groups
with operation of +.

Example 2.1.7 (Trivial group). G = {e}.

Example 2.1.8. Fix n > 1. Then, Zn = {0, 1, 2, . . . , n − 1} is a group under
addition. However, it’s not a group under multiplication.

Example 2.1.9. R is not a group under multiplication. It satisfies associativity
and existence of identity but 0 does not have a multipllicative inverse. However,

R∗ = R \ {0}

is a group under multiplication. Likewise, Q∗ = Q \ {0} and C∗ = C \ {0} are
groupsunder multiplication.

Example 2.1.10. Let n > 1 and

u(n) = {a | 1 ≤ a ≤ n− 1, gcd(a, n) = 1}.

For example,
u(3) = {1, 2} u(5) = {1, 2, 3, 4}
u(4) = {1, 3} u(8) = {1, 3, 5, 7}

For all n > 1, u(n) is a group under multiplication modulo n.

Example 2.1.11. Consider

M2(R) = {all 2× 2 matrices with entries in R}.

This set is a group under addition.

Example 2.1.12. All vector spaces are groups under addition.

14



Example 2.1.13 (General linear group).

GL2(R) = {all 2× 2 matrices that are invertible}

=

{[
a b
c d

] ∣∣∣∣ ad− cb 6= 0

}
This is a group under matrixmultiplication.

We want to make new groups from existing groups. Let G and H be groups
and that let � and ∗ denote their binary operations. Then,

G×H = {(g, h) | g ∈ G, h ∈ H}.

This is also a group where

(g1, h1) ◦ (g2, h2) = (g1�g2, h1 ∗ h2).

Example 2.1.14. Consider

G = Z3 = {0, 1, 2}, H = R∗ = R \ {0}

Then,
(2, 4) ◦ (2, 6) = (2 + 2, 4× 6) = (1, 24) ∈ G×H.

In this case, the identity of Z3 × R∗ is (0, 1).

Definition 2.4. The order of G refers to number of elements in G and is
denoted by |G|. G is finite if |G| <∞. Otherwise, it is infinite.

There are many different binary operations used to define groups. Normally,
we will use the mutliplicative notation. The only exception is when we are
proving something about an additive group.

From now on, we will be using the following notations:

an =


a · a · · · · · a (n times) if n > 0

1 n = 0

(a−1 · · · (a−1) n < 0

na =


a+ a+ · · ·+ a (n times) if n > 0

0 n = 0

(−a) + (−a) + · · ·+ (−a) n < 0

Theorem 2.1. For every group G, identity is unique.

Proof. Suppose e and e′ are identities of G. So for any a ∈ G, (1) ae = a and
(2) e′a = a. If a = e′, (1) implies e′e = e′. If a = e, (2) implies e′e = e. So

e′ = e′e = e,

and e′ = e.

15



Theorem 2.2. If g ∈ G, then inverse of g is unique.

Proof. Suppose that g′ and g′′ are inverses of g. So g′g = gg′ = e and g′′g =
gg′′ = e. So

gg′ = gg′′ = e.

If we multiply both sides by g′,

g′(gg′) = g′(gg′′)

=⇒ (g′g)g′ = (g′g)g′′

=⇒ eg′ = g′ = g′′ = eg′′.

Theorem 2.3 (Socks-shoes property). (ab)−1 = b−1a−1.

Proof. By definition, (ab)−1 is the inverse of (ab), i.e.,

(ab)(ab)−1 = e.

But we also have
(ab)(b−1a−1) = a(bb−1)a−1

= aea−1

= aa−1

= e.

So b−1a−1 is also n inverse of (ab). Since inverses are unique, we have

(ab)−1 = b−1a−1.

Theorem 2.4. If G, cancellation works, i.e. if ab = bc, then a = c.

Proof. Suppose that ab = ac. Then, a−1 ∈ G. So we multiply both sides by
a−1 on the left

a−1(ab) = a−1(ac).

So b = c.

Remark. As a consequence, each row and column in a Cayley table (group
operation table) has a distinct element. In other words, if abi = abj then
bi = bj

Theorem 2.5. For any a, b ∈ G, there exists unique x and y such that ax = b
and ya = b.

Proof. One solution is x = a−1b since

a(a−1b) = (aa−1)b = b.

This is unique because if ax1 = b = ax2, by cancellation x1 = x2.
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2.2 Subgroups

Definition 2.5. A subset H of a group G is a goup if it is a group under the
same operation of G.

Example 2.2.1. If G 6= {e}, the G has at leaset two subrgoups:

• {e} ⊆ G,

• G itself.

These are trivial groups but we want {e} ⊂ H ⊂ G.

Example 2.2.2. Consider G = Z. Then,

E = {n ∈ G |n is even} = {−4,−2, 0, 2, 4}

is a subgroup because

• because it is closed under addition.

• 0 ∈ E.

• addition is associative.

• for any a ∈ E, −a ∈ E so every element in E has an inverse.

Example 2.2.3. The set of odd integers is not a subgroup because it is not
closed under addition and 0 is not an element.

Example 2.2.4. mZ = {mn |n ∈ Z} is a subgroup.

Example 2.2.5. Consider D4. Let H = {R0, R90, R180, R270}. Note D4 is not
abelian but H is.

Example 2.2.6. Consider C∗ = C \ {0}, a group under multiplication. Then,

H = {1,−1, i,−i}

is a finite subgroup of C∗:

1 i −1 −i
1 1 i −1 −i
i i −1 −i 1
−1 −1 −i 1 i
−i −i 1 i −1

Example 2.2.7. Show that if a2 = e for all a ∈ G then G is abelian.
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Proof. Given any a, b ∈ G, we want to show ab = ba. Given that aa = e, since
inverses are unqiue, a = a−1. Now, consider (ab)2. Since ab ∈ G,

(ab2) = (ab)(ab) = e.

Now, we multiply (ab)(ab) = e on the left by a and on the right by b:

a(ab)(ab)b = aeb

(aa)(ba)(bb) = ab

ba = ab

So G is abelian.

Theorem 2.6. A subset H of a group G is a subgroup if

• e ∈ H.

• ∀g1, g2 ∈ H, g1 ◦ g2 ∈ H.

• ∀g ∈ H, g−1 ∈ H

Proof. 1 implies that H has an identity, 2 implies that H is closed under oper-
ation. 3 implies that every g ∈ H has an inverse. So we only need to check the
associative property.

Let a, b, c ∈ H. Now, a, b, c ∈ G, so

(ab)c = a(bc)

holds in G. But since the operation is closed, (ab) and (bc) are in H, so

(ab)c = a(bc)

also holds in H.

Definition 2.6 (Center of a group). For any group G, the center of G is defined
as

Z(G) = {a ∈ G | ag = ga, ∀g ∈ G}.

Example 2.2.8. If G is abelian, G = Z(G). If G = D3, Z(D4) = {R0, R180}.
For all G, e ∈ Z(G).

Theorem 2.7. For all G, Z(G)is a subgroup of G.

Proof. First, e ∈ Z(G) since for all g ∈ G,

eg = g = ge.
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Let a, b ∈ Z(G). We want to show that ab ∈ Z(G). Sofor any g ∈ G, we
need to show that (ab)g = g(ab). To prove this, take any g ∈ G. Then,

(ab)g = a(bg) (associativity)

= a(gb) (since b ∈ Z(G))

= (ag)b (associativity)

= (ga)b (since a ∈ Z(G))

= g(ab) (associativity)

So ab ∈ Z(G).
Now, let a ∈ Z(a) and take any g ∈ G. So g−1 ∈ G, and since a ∈ Z(G),

ag−1 = g−1a.

Taking the inverse of both sides gives

ga−1 = (ag−1)−1 = (g−1a)−1 = a−1g.

So for any a ∈ Z(G) and any g ∈ G,

a−1g = ga−1,

i.e. a−1 ∈ Z(G).

Example 2.2.9. If every proper subgroup of group G is abelian, is G abelian?

Proof. No. D4 is not abelian. However, all proper subgroup are abelian.

H1 = {R0, R90, R180, R270}
H2 = {R0, R180}
H3 = {R0, D1}
H4 = {R0, D2}
H5 = {R0, V }
H6 = {R0, H}
H7 = {R0, D1,2 , H, V }

3 Special groups

3.1 Cyclic groups

So how do we find subgroups? Here’s one way to construct subgroups:

Definition 3.1. Fix an a ∈ G. Then, 〈a〉 = {am | n ∈ Z}
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Example 3.1.1. Consider G = D4. Then, since R90 ∈ G4,

〈R90〉 = {R−190 , R0, R90, R90 ◦R90, · · · }
= {R0, R90, R180, R270}.

Example 3.1.2. If G = Z6 and 2 ∈ G, then

〈2〉 = {2− 2− 2, 2− 2, 2, 2 + 2, 2 + 2 + 2, . . . }
= {2, 4, 0}.

Theorem 3.1. For any a ∈ G, 〈a〉 is a subgroup of G and it is the smallest
subgroup of G that contains a.

Proof. First, e ∈ 〈a〉 since e = a0. Now, suppose that g1, g2 ∈ 〈a〉. So g1 = an1

and g2 = an2 . But then,

g1g2 = an1an2 = an1+n2 ∈ 〈a〉.

Finally, if an ∈ 〈m then (an)−1 = a−n ∈ 〈a〉. So 〈a〉 is a subgroup.
To prove that it is the smallest subgroup, consider a subgroup H with a ∈ H.

Then, a1, a2, a3 and a0, a−1, a−2 are also in H. So 〈a〉 ⊆ H.

Definition 3.2. If G contains an element a such that G = 〈a〉, then we say G
is cyclic and a is the generator.

Example 3.1.3. Z6 is cyclic since Z6 = 〈5〉.

Definition 3.3. If a ∈ G, then the order of a is the smallest positive integer
such that an = e. We write |a| = n. If order is not finite, |a| =∞.

Example 3.1.4. Consider G = Z6. Then,

• |3| = 2 since 3 + 3 = 0.

• |5| = 6 since 5 + 5 + 5 + 5 + 5 + 5 = 0.

Example 3.1.5. Consider Z with addition. Then, |1| =∞.

Example 3.1.6. Consider Zn with addition. Then, |1| = n.

Example 3.1.7. Consider u(8) = {1, 3, 5, 7} under multiplication. Observe
that

|1| = 1

|3| = 2

|5| = 2

|7| = 2

u(8) is not cyclic because no element with |a| = |u(8)| = 4.

Theorem 3.2. Every cyclic group is abelian.

20



Proof. Let g1, g2 ∈ 〈a〉. So g1 = an1 and g2 = an2 for some n1, n2. Then,

g1g2 = an1an2 = an1+n2 = an2+n1 = an2an1 = g2g1.

Theorem 3.3. If G is cyclic, all subgroups are cyclic.

Proof. Let H ⊆ G be a subgroup of G = 〈a〉. If H = {e} and if H = G, then
H is cyclic.

So assume that {e} ⊂ H ⊂ G. If g ∈ H, then g = an for some n ∈ Z. Since
g−1 = a−n, we know that at least one of n or −n is positive.

Let M be the smallest positive integer such that am ∈ H. We claim that
H = 〈am〉. If am ∈ H, then 〈am〉 ⊆ H. Take g = an ∈ H. Then, we can divide
n by m using the division algorithm, i.e.,

n = mq + r,

with 0 ≤ r < m. If 0 < r < m, then

an = amq+r = amqar.

Since amq ∈ H, a−mq ∈ H. So

ana−mq = an−mq = ar ∈ H.

However, this contradicts our assumption that m is the smallest positive expo-
nent in H. Therefore, r = 0. Hence, n = mq, so g = an = (am)q ∈ 〈am〉. So H
is cyclic.

Recall that the order of a ∈ G, denoted |a|, is smallest positive integer n
such that an = e. The order of G, denoted |G|, is number of elements in G.

Theorem 3.4. Let a ∈ G.

• If |a| =∞, then ai = aj if and only if i = j.

• If |a| = n, then ai = aj if and only if n|(i− j).

• If |a| = n, Then, 〈a〉 = {a0, a1, a2, . . . , an−1}. Also, |a| = |〈a〉|.

Proof. (1) Because |a| =∞, all elements of 〈a〉 are distinct. Indeed, if ai = aj ,
then aia−j = e. So ai−j = e. But |a| =∞, so ai−j = e iff i− j = 0, i.e., i = j.

(2) Suppose that ai = aj . Without loss of generality, we can assume that
i > j. So aia−j = e. Now, we can divide (i− j) by n using division algorithm,
i.e.,

(i− j) = nq + r,

with 0 ≤ r < n. If 0 < r < m, then

ai−j = (an)qar = ar = e.
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This means ar = e with r < n. However, this contradicts the assumption that
|a| = n. So r = 0 and n|(i − j). To prove the other direction, assume that
n|(i− j). Then, (i− j) = nq and i = nq + j. Then,

ai = anq+j = (an)qaj = aqaj = aj .

(3) We want to show that 〈a〉 = {a0, a1, . . . , an−1}. Take ak ∈ 〈a〉. Then,
we divide k by n using division algorithm:

k = nq + r,

with 0 ≤ r < n. So
ak = anq+r = ar.

So ak = ar ∈ {a0, a1, . . . , an−1}.

Example 3.1.8. Consider

Z5 = {0, 1, 2, 3, 4}.

This is a cyclic group generated by 1. So |1| = 5. Note that 7 · 1 = 2 = 22 · 1
and 5|(22− 7).

Corollary 3.1. For any cyclical group G = 〈a〉, if |a| = n, and ak = e, then
n|k.

Proof. Apply (2) with i = k and j = 0.

Theorem 3.5. If |a| = n, then |ak| = n/ gcd(n.k).

Example 3.1.9. Consider

Z6 = {0, 1, 2, 3, 4, 5}.

Then,

〈1〉 = {1, 1 + 1, 1 + 1 + 1, 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1}.

Then, |1| = 6. So

〈1〉 = {1 · 1, 2 · 1, 3 · 1, 4 · 1, 5 · 1, 0 · 1}.

So

|2 · 1| = 6

gcd(2, 6)
=

6

2
= 3

|3 · 1| = 6

gcd(3, 6)
=

6

3
= 2

|4 · 1| = 6

gcd(4, 6)
=

6

2
= 3

Corollary 3.2. For any k ∈ Z, Zn = 〈k〉 iff gcd(n, k) = 1.
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Proof. Observe that

k = 1 + 1 + 1 + · · ·+ 1 = k · 1

with |1| = n. So

|k| = n

gcd(n, k)
.

So 〈k〉 = Zn iff |k| = n iff n = n/ gcd(n, k) iff gcd(n, k) = 1.

Now, recall that Q∗ = Q \ {0}, C∗ = C \ {0}, and R∗ = R \ {0} are multi-
plicative groups. We are interested in finding finite multiplicative subgroups.

Theorem 3.6. In Q∗ and R∗, there are only two finite subgroups, which are
{1} and {1,−1}.

Proof. Take any H ⊆ Q∗ be a subgroup with |H| < ∞. Let a ∈ H. Then,
an = 1 for some n. So, a satisfies

an − 1 = 0 = (a− 1)(an−1 + an−2 + · · ·+ a+ 1).

If n = 1, then a = 1. If n = 2, then a2 = 1 so a = ±1.
If n < 3, a would have to take a root of

xn−1 + xn−2 + · · ·+ x+ 1 = 0,

or (x − 1). But the former equation does not have real or rational roots. So
a = 1.

Therefore, H = {1} or H = {−1, 1}.

Recall the following properties of complex numbers:

• (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i.

• |a+ bi| =
√
a2 + b2.

• (a+ bi)−1 = (a− bi)/(a2 + b2).

We can represent complex numbers using polar coordinates:

a+ bi = z = |z|(cos θ + i sin θ),

and we denote it by rcisθ. It is convenient to use polar coordinates due to the
following property:

Theorem 3.7. If z1 = r1cisθ1 and 2 = r2cisθ2. Then,

z1z2 = r1r2(cis(θ1 + θ2))

z−11 = r−1cis(−θ)
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Definition 3.4 (Circle subgroup).

T = {z ∈ C∗ | |z| = 1}

is a subgroup.

Proof.

• (identity) 1 ∈ T since |1| = 1.

• (closure) Suppose z1, z2 ∈ T. So z1 = 1cisθ1 and z2 = 1 cos θ2. So z1z2 =
1 · 1cis(θ1 + θ2) ∈ T.

• (inverse) If z = 1cisθ ∈ T, then z−1 = 1cis(−θ) ∈ T.

Definition 3.5. Fix n ≥ 1. The complex numbers that satisfy xn − 1 = 0 are
called n-th root of unity.

Remark. xn − 1 has n roots (up to multiplicity) in C.

Example 3.1.10. Consider n = 3,

x3 − 1 = 0.

Roots are 1, w, w2, . . . , where

w =
−1 +

√
3i

2
, w2 =

−1−
√

3i

2
.

Theorem 3.8. The set of n-th root of unity form a cyclic group of order n in
C∗. Furthermore, the n-th root of unity are

z = cis

(
2kπ

n

)
,

for k = 0, 1, 2, . . . , n− 1.

Definition 3.6. A generator of the n-th group of units is called a primitive n-th
root.

Example 3.1.11. If n = 8, primitive roots are

w,w3, w5, w7,

and the rest are non-primitive roots.

Example 3.1.12. Find all cyclic subgroups of Z8.

〈0〉 = {0}
〈1〉 = 〈3〉 = 〈5〉 = 〈7〉 = Z8

〈4〉 = {0, 4}
〈2〉 = 〈6〉 = {0, 2, 4, 6}
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Example 3.1.13. Find all cyclic subgroups of u(9).

〈1〉 = {1}
〈2〉 = u(9) = 〈5〉
〈4〉 = {4, 7, 1} = 〈7〉
〈8〉 = {1, 8}.

Example 3.1.14. Prove that the order of every element in a cyclic group 6
divides |6|.

Example 3.1.15. Suppose |6| = p, a prime and G cyclic. Show that every
nonidentity element has order p.

3.2 Permutation groups

Definition 3.7. A permutation of a set X is a bijection:

σ : X → X

Definition 3.8. A permutation group of a set X is the set of all permutations
of X with binary operation composition of functions.

Example 3.2.1. Consider

X = {1, 2, 3, 4, 5}

Then, given
σ : X → X

1→ 1

2→ 3

3→ 4

4→ 2

5→ 5

and
τ : X → X

1→ 2

2→ 3

3→ 1

4→ 5

5→ 4

,
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we have
σ · τ : X → X

1→ 3

2→ 4

3→ 1

4→ 5

5→ 2

To avoid writing like this, we introduce a better notation:

σ =

(
1 2 3 4 5
1 3 4 2 5

)
, τ =

(
1 2 3 4 5
2 3 1 5 4

)
.

Then,

σ · τ =

(
1 2 3 4 5
1 3 4 2 5

)
·
(

1 2 3 4 5
2 3 1 5 4

)
=

(
1 2 3 4 5
3 4 1 5 2

)
Likewise,

τ · σ =

(
1 2 3 4 5
2 1 5 3 4

)
Note that σ · τ 6= τ · σ. In general, a permutation group is not abelian.

Definition 3.9. Fix an integer n ≥ 1. The symmetric group on n letters,
denoted Sn, is the set of all permuatations of {1, 2, 3, . . . , n}.

Theorem 3.9. Sn is a non-abelian group (if n ≥ 3).

Proof.

• Sn has an identity (
1 2 3 · · · n
1 2 3 · · · n

)
• Each elment has an inverse (reverse the map the permutation)

• Composition is associative

Remark. Note that there are n! permutations.

Example 3.2.2.

S3 =

{(
1 2 3
1 2 3

)
,

(
1 2 3
1 3 2

)
,

(
1 2 3
2 1 3

)
(

1 2 3
2 3 1

)
,

(
1 2 3
3 1 2

)
,

(
1 2 3
3 2 1

)}
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Now, we introduce a cyclic notation. Consider(
1 2 3 4 5 6
1 4 3 6 2 5

)
Note that 1 and 3 map to themselves whereas we have

2→ 4→ 6→ 5.

So we write (
1 2 3 4 5 6
1 4 3 6 2 5

)
= (2465),

which means that

• each element is mapped to the one to right

• the last element is mapped to the front

• elements that do not appear are apped to themselves

Example 3.2.3. (
1 2 3 4 5 6
2 1 4 6 5 3

)
= (12)(346)

Example 3.2.4.(
1 2 3 4 5 6
4 2 1 3 5 6

)
= (143) = (314) = (431)

Definition 3.10. A permutation of form (a1, a2, . . . , ak) is called a k-cycle.

Theorem 3.10. If two cycles, σ and τ , are disjoint cycles, (i.e., they don’t
share any common values), then σ · τ = τ · σ.

Proof. Let σ = (a1, . . . , ak) and τ = (b1, . . . , bl). We know that

σ ∩ τ = ∅.

Then,

• if x ∈ {1, 2, . . . , n} but x /∈ σ ∪ τ , then σ(x) = x and τ(x) = x so
σ(τ(x)) = x = τ(σ(x)).

• suppose x ∈ σ so x = ai for some i and x /∈ τ . Now, σ(x) = σ(ai) = ai+1.
Also, τ(x) = x and τ(ai+1) = ai+1. So

σ(τ(ai)) = σ(ai) = ai+1 = τ(ai+1) = τ(σ(ai))

Example 3.2.5.
(12)(346) = (346)(12)
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Remark. Not every permutation can be expressed as a cycle

Theorem 3.11. Every permutation can be expressed as a product of disjoint
cycles.

We will illustrate this with an example, rather than a proof. Consider

σ =

(
1 2 3 4 5 6 7 8
3 7 5 2 1 8 4 6

)
We start with an element that is not mapped to itself, i.e.,

1→ 3→ 5 =⇒ (135)

Now, take another element not in previous step and is not mapped to itself

2→ 7→ 4 =⇒ (274)

We can do the same thing for the rest and get

σ =

(
1 2 3 4 5 6 7 8
3 7 5 2 1 8 4 6

)
= (135)(274)(68)

The advantangeof doing this is that it’s easy to compute the order of σ.

Theorem 3.12. Suppose σ = σ1σ2 . . . σt is a product of t disjoint cycles. Then,

|σ| = lcm (|σ1|, |σ2|, . . . , |σt|)

Remark. If σ = (a1a2a3 · · · ak) is a k-cycle, |σ| = k.

Proof. Let di = |σi| and d = lcm(d1, . . . , dt). Since the cycles are disjoint,

σd = (σ1 · · ·σt)d = σd1σ
d
2 · · ·σdt

For each i, d = dimi for some mi. So

σd = σd1m1
1 σd2m2

2 · · ·σdtmt
t

=
(
σd11

)m1
(
σd22

)m2

· · ·
(
σdtt

)mt

= em1em2 · · · emt

= e

So |σ| ≤ d.
Now, let l = |σ|. So

e = σl = (σ1σ2 · · ·σt)l = σl1 · · ·σlt

Since the cycles are disjoint, this implies that

σli = e
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for each i. Since |σi| = di, we have that di|l for all i. So l is a common multiple
of d1, d2, . . . , dt. So

lcm(d1, . . . dt) ≤ l.

Thus,
|σ| ≤ d = lcm(d1, d2, . . . , dt) ≤ l = |σ|.

Hence, |σ| = lcm(d1, . . . , dt).

Example 3.2.6. Going back to the example, since

σ = (135)(274)(68),

we get
|σ| = lcm(3, 3, 2) = 6.

Definition 3.11. A 2-cycle is called a transposition.

Example 3.2.7. Consider the cycle (1423). We can write it as a product of
transpoistions:

(1423) = (13)(12)(14)

Theorem 3.13. Every permutation can be expressed as a product of transposi-
tions.

Proof. We only need to verify this for cycles. Consider

(a1a2 · · · ak) = (a1ak)(a1ak−1)(a1ak−2) · · · (a− 1a3)(a1a2)

Example 3.2.8.
σ = (135)(247)(68)

= (15)(13)(27)(24)(68)

Remark. Factorization in the transposition is not unique.

Example 3.2.9.
(123) = (13)(12)

= (13)(23)(12)(13)

(1235) = (15)(13)(12)

= (13)(24)(35)(14)(24)

Observe that (123) is a product of an even number of transpoisitions whereas
(1235) is a product of an odd number of transpositions. So we want to make
this into a theorem but we need to prove a lemma first:

Lemma 3.1. If (id) = e = σ1σ2 · · ·σt, then t is even.

Proof. Since no transposition is the identity, we must have t > 1. If t = 2, we
are done. We can perform induction on t.

e have the following 4 cases for σt−1σt:
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σt−1σt = σ′t−1σ
′
t

1 (ab)(ab) e
2 (bc)(ab) (ac)(bc)
3 (cd)(ab) (ab)(cd)
4 (ac)(ab) (ab)(bc)

In case 1,since (ab)(ba) = e, weremoveσt−1σt from e = σ1 · · ·σt−2, and
byinducting t− 2 is even, so t is even.

In cases 2, 3 and 4, we can replace σt−1σt with σ′t−1σ
′
t. Inall cases, the last

occurence of a moves left by 1.
Now, we look at σt−2σt−1.Ifin case 1,remove the pair σt−2σt−1 and finish by

inducting. Else, use cases 2, 3 and 4 to move left one transpositions.Weeventually
get into case 1. If not, we end with

(id) = (ab′)σ2σ3 · · ·σt,

but the right hand side sends a to b′, contraidicting the fact that this is identity.

Theorem 3.14. No permutation can be expressed as both of odd number of
transpositions and event number of transpositions

Proof. Suppose
σ = σ1 · · ·σt = τ1 · · · τl

with t even and l odd. Then,

(id) = σ
(
σ−1

)
= (σ1 · · ·σt)(τ1 · · · τl)−1

= σ1 · · ·σtτ−11 · · · τ−1l
= σ1 · · ·σtτ1 · · · τl

So (id) is a product of t + l transpositions. But this is odd, so a contradiction
to the lemma.

Definition 3.12. A permutation of σ ∈ Sn is even if it can be written as an
even number of transpositions and odd if it can be written as an odd number of
transpositions.

3.3 Alternating groups

Definition 3.13. The alternating group An is

An = {σ ∈ Sn | σ is even}.

Theorem 3.15. An is a group and a subgroup of Sn.
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Proof. To prove closure, let σ, τ ∈ An. So

σ = σ1 · · ·σt

and
τ = τ1 · · · τl

with t, l even. But then

στ = σ1 · · ·σtτ1 · · · τl ∈ An

since t+ l is even. Also, (id) ∈ An by the lemma above.
Finally, if σ ∈ An and σ = σ1 · · ·σt with t even, then

σ−1 = (σ1 · · ·σt)−1

= σ−1t · · ·σ−11

= σt · · ·σ1 ∈ An

3.4 Group of rigid motions

Recall that D4 is a set of all rigid motions of the square. We can now think of
the rotations as permutations

R0 =

(
1 2 3 4
1 2 3 4

)
,

R90 =

(
1 2 3 4
2 3 4 1

)
,

R180 =

(
1 2 3 4
3 4 1 2

)
,

...

D =

(
1 2 3 4
1 4 3 2

)
In fact, we can apply this for any regular polygons:

Definition 3.14. Dn is the group of rigid motions of the regular n-gon.

Note that we are going to write vertices in clockwise fashion:

1

2

34

5
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A rigid motion is determined by 2 pieces of information:

• where 1 is sent to (n choices)

• do the numbers go clockwise or counter clockwise (2 choices)

So the total number of rigid motions is 2n.

Theorem 3.16. Dn is a group of order 2n.

Proof. We already showed that |Dn| = 2n. We want to show that it’s actually
a group:

• Clearly, e ∈ Dn since this is the motion where we leave unchanged.

• If σ, τ ∈ Dn, they are both rigid motion, but so it στ ∈ Dn.

• If σ ∈ Dn is a rigid motion, we can always reverse the motion to back the
original configuration. So σ−1 ∈ Dn.

Remark. Dn is a subgroup of Sn.

Example 3.4.1. D3 = S3

We saw that D4 is not cyclic. In general, Dn is not cyclic. However, Dn can
be generated by 2 elements.

Theorem 3.17. For n ≥ 3, Dn consists of all products of elements r and s
such that rotation, r, and reflection, s, satisfy

rn = 1 and sn = 1,

Proof. Notice that any rigid motion is a rotation and/or a reflection.
Let r = 2π

n . Then, there are n rotations:

(id), r, r2 = 2

(
2π

n

)
, r3 = 3

(
2π

n

)
, . . . , rn−1(n− 1)

(
2π

n

)
Likewise, there are n reflections s1, s2, s3, . . . , sn, where each si leaves i fixed.
For example, s1 in D5 will look like this:

1
2

34

5
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If n is odd, si only fixes i, whereas if n is even, si fixes two or no elements (e.g.,
reflection of a square along the vertical axis fix no elements).

Let s = s1. I claim that every element of Dn can be written in terms of r
and s. Recall that a rigid motion is determined by (1) where 1 is sent and (2)
whether numbers are clockwise or counter clockwise. If 1 is sent to k clockwise,
the motion is given by rk−1. If 1 is sent to k in counter clockwise, the motion
is given by rk−1s. So

Dn = {rasb | D ≤ a ≤ n− 1, 0 ≤ b ≤ 1}.

Finally, consider rsrs. Then, rsrs = 1 so r(srs) = 1 and r−1 = srs.

Example 3.4.2. Show Dn is not abelian for all n ≥ 3.

Proof. Suppose that Dn is abelian. We showed that rsrs = 1. Since Dn is
abelian, rs2r = 1. But s2 = 1. So r2 = 1. But n ≥ 3 and |r| = 3 > 2.

Example 3.4.3. Use cycle notation to write out all elements of D5.

3.5 Lagrange’s Theorem

Definition 3.15. Let G be a group with subgroup H ⊆ G. The left coset of H
with representative g ∈ G is the set

gH = {gh |h ∈ H}.

The right coset of H is
Hg = {hg |h ∈ H}.

Example 3.5.1. Consider{
G = u(8) = {1, 3, 5, 7}
H = {1, 5} ⊆ G

Then,
1H = {1, 5}
3H = {3, 7}
5H = {5, 1}
7H = {7, 3}

Example 3.5.2. Consider{
G = Z8 = {0, 1, 2, 3, . . . , 7}
H = {0, 4} ⊆ G
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Then,
0 +H = {0, 4}
1 +H = {1, 5}
2 +H = {2, 6}

...

7 +H = {7, 3}

Remark. If G is abelian, then left and right cosets are same, i.e.

gH = {gh |h ∈ H} = {gh |h ∈ H} = Hg.

This is false if G is not abelian.

Example 3.5.3. Consider G = D4 and T = {R0, H}, where H is the horizontal
flip. Then,

R90T = {R90 ◦R0, R90 ◦H} 6= {R0 ◦R90, H ◦R90} = TR90

Lemma 3.2 (Properties of cosets). Let H ⊆ G be a subgroup. Then,

• g ∈ gH.

• gH = H iff g ∈ H.

• g1H = g2H iff g1 ∈ g2H.

• g1H = g2H or g1H ∩ g2H = ∅.

• g1H = g2H iff g−11 g2 ∈ H.

• |g1H| = |g2H|.

• |gH| = |Hg|

Proof.
(1) Since e ∈ H, ge = g ∈ gH.
(2) (⇒) Suppose gH = H. Since g ∈ gH, g ∈ H because H = gH. (⇐)

Now we want to show that gH given g ∈ H. Since g ∈ H, and H is a subgroup,
gh ∈ H for all h ∈ H. So gh ⊆ H. Now, we take h ∈ H. Because g ∈ H,
g−1 ∈ H, and so is g−1h. But then

h = g(g−1h) ∈ gH.

Thus, H ⊆ gH. So H = gH.
(3) (⇒) Suppose g1H = g2H. Since g1 ∈ g1H, this implies that g1 ∈ g2H.

(⇐) Take t ∈ g1H so g1h for some h. And we are given that g1 ∈ g2H, so
g1 = g2h

′ for some h′. Then, t = gh = (g2h)h′ = g2(hh′) ∈ g2H. So g1H ⊆ g2H.
Now, take t ∈ g2H so t2h and sw know g1(h′)−1 = g2. So

t = g2h =
(
g1(h′)−1

)
h

= g1[(h′)−1h] ∈ g1H.
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So g2H ⊆ g1H. Hence, g1H = g2H.
(4) Since g1H and g2H are sets, we can have (a) g1H ∩ g2H = ∅, (b)

g1H = g2H, or (c) g1H 6= g2H and g1H ∩ g2H. Suppose x ∈ g1H ∩ g2H. So
x ∈ g1H implies that g1H = xH. Also, x ∈ g2H implies that g2H = xH. So
g1H = xH = g2H. So g1H = g2H. So (c) cannot happen.

(5) Details are same as the proof of (3)
(6) Define a map

f : g1H → g2H

by f(g1h) = g2h. I claim that f is a bijection.
(one-to-one) If f(g, h) = f(g, h′), we have g2h = g2h

′. By cancellation,
h = h′ so g1h = g1h

′.
(onto) Take t = g2h ∈ g2H. Then, g1h ∈ g1H and f(g1h) = g2h2 = t. Since

f is a bijection,
|g1H| = |g2H|

(7) Same idea but we use a map

f : gH → Hg

by f(gh) = hg.

Theorem 3.18 (Lagrange’s Theorem). If G is a finite group and H ⊆ G is a

subgroup, then, |H|
∣∣|G|. Also, the number of distincts cosets is |G||H| .

Proof. Suppose that there are a distinct left cosets ofH inG, say g1H, g2H, . . . , gnH.
For each g ∈ G,

g ∈ gH = giH

for some gi. Thusm,
G = g1H ∪ g2H ∪ · · · ∪ gnH.

Since cosets are distinct,

|G| = |g1H|+ |g2H|+ |g3H|+ · · ·+ |gnH|
= |H|+ |H|+ · · · |H|
= n|H|

So |H|
∣∣|G| and n=|G|

|H| is the number of distinct cosets.

Definition 3.16. The index of H in G is the number of distinct left cosets and

denoted [G : H]. So [G : H] = |G|
|H| .

Example 3.5.4. Consider{
G = u(8) = {1, 3, 5, 7}
H = {1, 5} ⊆ G

Then, [G : H] = 4/2 = 2.
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Note that Lagrange is not true if |G| =∞.

Example 3.5.5. Consider G = Z and H = {2n | n ∈ Z}21, the set of even
integers. Then, there are only two distinct left cosets: 0 + H = H and 1 + H.
So [G : H] = 2. However,

|G|
|H|

=
∞
∞
.

Corollary 3.3. For any g ∈ G (G finite), then |g|
∣∣|G|.

Proof. For any g ∈ G, |g| = |〈g〉|. Since 〈g〉 is a subgroup of G, |g|
∣∣|G|.

Corollary 3.4. If |G| = p is a prime, then G must be cyclic and is generated
by any non-identity element.

Proof. Let g ∈ G with g 6= e. Then, 1 < |g|
∣∣|G| = p so |g| = p, i.e. 〈g〉 = G.

Roughly this says all cyclic cyclic groups of order p are the same as Zp.

Corollary 3.5. Let H and K be subgroup of G such that K ⊂ H ⊂ G. Then,

[G : K] = [G : H][H : K]

Proof.

[G : K] =
|G|
|K|

=
|G|
|H|
× |H|
|K|

= [G : H][H : K]

Note that the converse of Lagrange’s theorem is false, i.e. if d
∣∣G|, then G

has a subgroup of order d.

Example 3.5.6. Consider an altenatring group A4. Then,

|A4| = 4!/2 = 12

Note that 6|12, but we will show that A4 has no subgroup of order 6.
Suppose H ⊆ A4 was a subgroup of order t. So [A4 : H] = 12/6. For all

g ∈ A4, gH = Hg. So

1. if g ∈ H, then gH = H = Hg

2. if g /∈ H, then gH 6= H.

Since [A4 : H] = 2, this means A4 = H ∪ gH but we also would have Hg 6= H
and A4 = H ∪Hg/ Thus,

H ∪ gH = H ∪Hg =⇒ gH = Hg,

since those unions are disjoint. So

gHg−1 = H,
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for all g ∈ A4.
Note that the group A4 has 8 three cycles:

(123), (132), (124), (142), (134), (143), (234), (243).

So H has at least one of three cycles, say (123) ∈ H. This implies that (123)−1 =
(132) ∈ H. Then,

(124)(123)(124)−1 = (243) ∈ H, (243)(123)(243)−1 = (142) ∈ H,

But then H has at least 7 elements:

(id), (123), (132), (243), (243)−1, (142), (142)−1

But |14| = 6. So H does not exist.
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4 Fermat’s little theorem

4.1 Fermat’s little theorem

Definition 4.1. Euler’s φ-function φ : N→ N is defined as

φ(1) = 1

φ(n) = {m | 1 ≤ m < n, gcd(m,n) = 1} = |U(n)|.

Theorem 4.1. Let a and n be integers with n > 1 and gcd(a, n) = 1. Then,

aφ(n) ≡ mod n

Proof. Since gcd(a, n) = 1, this means that a ∈ U(n). Then, |a|
∣∣U(n)| = φ(n).

So
φ(n) = |a|l

and

aφ(n) = a|a|l =
(
a|a|
)l

= 1

in U(n). As a result,
aφ(n) ≡ 1 mod n.

Theorem 4.2. Let p be prime. Then, for all integers a,

ap = a mod p

Proof. If p|a, then ap ≡ a mod p. If p 6 |a, then gcd(a, p) = 1. By Euler’s
Theorem,

aφ(p) ≡ 1 mod p.

But p prime means φ(p) = p− 1. So

ap−1 ≡ 1 mod p =⇒ ap ≡ a mod p.

Example 4.1.1. Consider a = 32 and p = 7. Then,

327 ≡ 32 mod 7.

This is extremely useful for modular computation.
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5 Isomorphisms

5.1 Isomorphisms

Informally, two sets are isomorphic if they are the same, but just have different
labels.

Definition 5.1. Let G and H be groups with operations ∗ and ◦, respectively.
Then, G is isomorphic to H if there is a bijection φ : G→ H that preserves the
operation, i.e.,

φ(a ∗ b) = φ(a) ◦ (φb),

where ∗ is an operation in G and ◦ is an operation in H. Then, we write G ' H.

Example 5.1.1. Consider

G = u(8) = {1, 3, 5, 7}
H = u(12) = {1, 5, 7, 11}

Prove that u(8) ' u(12).

Define our map φ : u(8)→ u(12) by

1→ 1

3→ 5

5→ 7

7→ 11

This is a bijection. To check the operation is preserved, we can compare cayley
tables:

1 3 5 7
1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

1 3 5 7
1 1 5 7 11
5 5 1 11 7
7 7 11 1 5
11 11 7 5 1

5.2 Cyclic groups

Theorem 5.1. (A) Every infinite cyclic group is isomorphic to Z. (B) Every
finite cyclic group G with |G| = n is isomorphic to Zn.

Proof. (A) Let G = 〈a〉 = {ai | i ∈ Z}. Define a map φ : Z → G by φ(i) = ai.
Then this is a bijection:

• (onto) For any g ∈ G, g = ai for some i ∈ Z. Then, φ(i) = ai = g.

• (one-to-one) Suppose that φ(k1) = ak1 = ak2 = φ(k2). Since G is infinite,
k1 = k2. So φ is one-to-one.
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Let i, j ∈ Z. Then,

φ(i+ j) = ai+j = aiaj = φ(i)φ(j).

(B) We are given that G = {a0, a1, . . . , an−1} = 〈a〉. Define

φ : Zn → G

by φ(i) = ai. This is clearly a bijection. Given i, j ∈ Zn, suppose i+j = k ∈ Zn.
Then,

φ(i+ j) = φ(k) = ak = ai+j = aiaj = φ(i)φ(j)

Theorem 5.2 (Properties of isomorphisms). If φ : G→ H is an isomorphism,
then

1. φ(eG) = eH .

2. φ(g)−1 = φ(g−1)

3. |G| = |H|

4. If G is abelian, so is H

5. If G is cyclic, then so is H

6. If G has a subgroup of order m, then so does H

7. For all g ∈ G, |g| = |φ(g)|

Proof. (1) We know eGeG = eG. So φ(eG) = φ(eGeG) = φ(eG)φ(eG). Then,

eHφ(eG) = φ(eG)φ(eG).

By the cancellation property, eH = φ(eG).

(2) Observe that

eH = φ(eG) = φ(gg−1) = φ(g)φ(g−1).

Since inverses are unique, φ(g)−1 = φ(g−1).

(3) Since φ is a bijection, |G| = |H|.

(4) Let h1, h2 ∈ H. Then,

h1h2 = φ(g1)φ(g2)

= φ(g1g2)

= φ(g2g1)

= φ(g2)φ(g1) = h2h1
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(5) Same type of proof

(6) Homework

(7) Let a = |g|, i.e. ga = eG. Then,

eH = φ(eG) = φ(ga) = φ(g) · · ·φ(g) = φ(g)a

So b = |φ(g)| ≤ a.
Now, let b = |φ(g)|. So

φ(g)b = φ(g · · · g) = φ(gb) = eH = φ(eG).

Since φ is one-to-one and gb = eG, so a ≤ b. Therefore, a ≤ b ≤ a. So a = b.

Example 5.2.1. D4 and Z8 are not isomorphic because Z4 is cyclic whereas
D4 is not.

Example 5.2.2. u(8) and Z4 are not isomorphic because |1| = 4 in Z4 but
every element has order to in u(8).

Example 5.2.3. Let G be any finite group of order p (prime). Then, G ' Zp
because G is cyclic with order p.

Fundamental problem of finite group theory. Classify all finite groups up
to isomorphism (memorize this table):

n all groups of order n up to isomorphism
1 {e}
2 Z2

3 Z3

4 Z4, u(8) = Z2 × Z2

5 Z5

6 Z6, S3

7 Z7

5.3 Cayley’s Theorem

Theorem 5.3. Every group is isomorphism to a group of permutations.

Example 5.3.1. Consider

U(8) = {1, 3, 5, 7}.

For each g ∈ U(8), we acn define a bijection

λg : U(8)→ U(8)

by letting λg(x) = gx. So λ3 is defined by λ3(x) = 3x:

1→ 3 · 1 = 3

3→ 3 · 3 = 1

5→ 3 · 5 = 7

7→ 3 · 7 = 5
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So we can write λ3 as a permutation:(
1 3 5 7
3 1 7 5

)
Likewise,

λ1 =

(
1 3 5 7
1 3 5 7

)
, λ5 =

(
1 3 5 7
5 7 1 3

)
, λ7 =

(
1 3 5 7
7 5 3 1

)
Example 5.3.2. Let Ū(8) = {λ1, λ3, λ5, λ7} as a set of bijections from U(8) to
itself. Then, U(8) ' Ū(8) as groups.

Proof. For each g ∈ G, defineλg : G→ G given by λg = g(x).

Theorem 5.4. Each λg : G→ G is a bijection, i.e., a permutation of elements
of G.

Proof. (surjective) Let g ∈ G. Since g−1 ∈ G, so is g−1G. Then,

λg(g
−1G) = g(g−1G) = (gg−1)G = G.

(injective) Suppose λg(x) = gx = gy = λg(y). But, by cancellation, gx = gy
implies x = y. So λy is injective.

Therefore,
H = {λg | g ∈ G} = Ḡ.

Theorem 5.5. H is a subgroup of all the permutations of the elements of G
under composition.

Proof. (closed) Take λg, λh ∈ H. Then,

(λg ◦ λh)(x) = λg(λh(x))

= λg(hx)

= ghx

But g, h ∈ G so gh ∈ G and λgh ∈ H and λgh(x) = ghx. So

(λgλh)(x) = ghx = λgh(x).

(identity) Since e ∈ G, λe ∈ H. For all x ∈ G, λe(x) = ex = x. So λe is the
identity function.

(inverse) Consider λg ∈ H. Since g ∈ G, g−1 ∈ G, and so λg−1 ∈ H. Then,
for all x ∈ G,

(λg ◦ λg−1) = g(g−1(x)) = x = λe(x)

Theorem 5.6. G ' Ḡ = H
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Proof. Define φ : G→ H by g → λg. We check that this is an isomorphism.
(surjective) If λg ∈ H, then g ∈ G, and φ(g) = λg.
(injective) Suppose φ(g) = λg = λh = φ(h). Since e ∈ G, we have

λg(e) = ge = he = λh(e).

So g = h (φ preserves operation).
So

φ(g) ◦ φ(h) = (λg ◦ λh) = λgh = φ(gh)

So H ' G, as desired.

5.4 Direct Products

Let (G, ∗) and (H, ◦) be two groups.

Definition 5.2 (External direct product). G×H = {(g, h) | g ∈ G and h ∈ H}
is a group under the operation

(g1, h1)(g2, h2) = (g1 ∗ g2, h1 ◦ h2)

Example 5.4.1. Consider Z2 = {0, 1}. Then,

Z2 × Z2 = {(0, 0), (0, 1), (1, 0), (1, 1)}

Note that |Z2 × Z2| = 4 but Z2 × Z2 6= Z4 since Z2 × Z2 has no element of
order 4.

Example 5.4.2. Z2 × Z3 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}

Theorem 5.7. If (g, h) ∈ G × H and |g| = r and |h| = s, then |(g, h)| =
lcm(r, s).

Example 5.4.3. In Z3, |1| = 3 and Z5, |1| = 5. So in Z3 × Z5,

|(1, 1)| = 15 = lcm(3, 5)

So Z3 × Z5 ' Z15

Theorem 5.8. Zn × Zm ' Znm if and only if gcd(m,n) = 1.

Proof. (⇒) Suppose Zn × Zm ' Znm, but gcd(m,n) = d > 1. So

mn

d
= m

(n
d

)
=
(m
d

)
n < mn.

But then, for all (a, b) ∈ Zn × Zm,

(a, b) + · · · (a, b)︸ ︷︷ ︸
mn
d

= (an
(m
d

)
, bm

(n
d

)
) = (0, 0)
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So every element in Zn × Zm ahs order less than mn/d but Znm has at least 1
element of order mn, which allows a contradiction to arise.

(⇐) |1| = n in Zn and |1| = m in Zm. Since gcd(m,n) = 1 and lcm(m,n) =
mn,

|(1, 1)| = lcm(m,n) = mn,

i.e., 〈(1, 1)〉 = Znm since |Zn × Zm| = mn.

Remark. gcd(a, b) · lcm(a, b) = ab.

Given a group G, can we find subgroups H and K such that G = H ×K?

Definition 5.3. Let G be a group with two subgroups H and K. Then, G is an
internal direct product of H an K if

• G = HK = {hk | h ∈ H, k ∈ K}

• H ∩K = {e}

• hk = kh for all k ∈ K and h ∈ H.

Example 5.4.4. Let G = U(8) = {1, 3, 5, 7}, H = {1, 3} and K = {1, 5}.
Then,

• HK = {1 · 1, 1 · 5, 3 · 1, 3 · 5} = {1, 5, 3, 7}.

• H ∩K = {e} = {1}

• Since U(8) is abelian, hk = kh for all k ∈ K and h ∈ H.

So U(8) is the internal direct product of H and K.

Theorem 5.9. If G is the internal direct product of H and K, then G = H×K.

Example 5.4.5. U(8) = H ×K

Proof. Observe that every g ∈ G can be written as g = hk for some h ∈ H, k ∈
K. So we define φ : G → H × K, by φ(g) = (h, k). First, we need to show
that φ is well defined. Suppose g = h1k1 = h2k2. Then, h−12 h1 = k2k

−1
1 . Since

h−12 h1 ∈ H and k2k
−1
1 ∈ K,

h−12 h1 = k2k
−1
1 ∈ H ∩K = {e}.

So h1 = h2 and k1 = k2 so g = hk is the unique ay of factoring g.
We claim that φ is one-to-one and onto (check this fact) so we just need to

show that the operation is preserved.

φ(g1g2) = φ(h1k1h2k2)

= φ(h1h2k1k2)

= (h1h2, k1k2)

= (h1, k1)(h2, k2)

= φ(g1)φ(g2)
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Example 5.4.6. Let T = {2n3m | n,m ∈ Z} ⊆ Q. Prove that T ' Z× Z.

Proof. So we want to show that T is an internal direct product of T1 = {2n | n ∈
Z} and T2 = {3m | m ∈ Z}.

• Note that T1 ∩ T2 = {1} = {20} = {30}

• Also, note that t1t2 = t2t1 for all t1 ∈ T1 and t2 ∈ T2, since T is abelian.

• Let t ∈ T . So t = 2n3m. But 2n ∈ T1 and 3m ∈ T2, so T = T1T2.

So T is an internal direct product of T1 and T2. Then, we apply the previous
theorem to conclude that T ' T1 × T2.

Remark. For finite groups, we can proe cancellation:

G×H = G×K =⇒ H = K

If G is not finite, this is false. Let G = Z×Z×Z×Z× · · · . Let H = Z and
K = Z× Z. Then, H ×G = K ×G but H 6= K.
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6 Factor groups

6.1 Factor groups

Recall that if H ⊆ G is a subgroup, then we have left and right cosets: gH and
Hg. Hereafter, we write G

H to denote the set of all distinct left cosets.

Example 6.1.1. Consider G = Z8 and H = {0, 4}. Then,

G

H
= {0 +H, 1 +H, 2 +H, 3 +H}

So G
H is a set. Does G

H have extra structure? In particular, is G
H a group?

Definition 6.1. G
H is a factor group (or quotient group) if G

H is a group.

So how should an operation on G
H be defined? Our first guess is to use

(aH)(bH) = (abH),

We have defined our operation in terms of coset representative but the prob-
lem is that there are many a′ such that aH = a′H.

Example 6.1.2. Consider the following in Z8

H :

(1 +H) = (5 +H)

(2 +H) = (6 +H)

(1 +H) + (2 +H) = (3 +H)

(5 +H) + (6 +H) = (11 +H) = (3 +H)

Example 6.1.3. Consider

S3 = {(1), (12), (13), (23), (132), (123)}
N = {(1), (12)}

Then,
S3

N
= {(1)N, (123)N, (23)N}

In this case, (123)N and (13)N are same cosets but (123)N(23)N and (13)N(23)N
are different:

(123)N(23)N = (123)(23)N = (12)N

(13)N(23)N = (13)(23) = (132)N

So when is G
H a group? It depends on H. H neeeds and extra property!

Definition 6.2. A subgroup N ⊆ G is a normal subgroup if gN = Ng for all
g ∈ G.

Theorem 6.1. If G is abelian, every subgroup is normal.
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Proof. For any g ∈ G and subgroup N ⊆ G,

gN = {gn | n ∈ N}

Since G is abelian, gn = ng for all n ∈ N . Thus,

gN = Ng,

and N is normal.

Example 6.1.4. Consider

N = {(1), (12)} ⊆ S3.

Then, N is not normal since

(123)N 6= N(123).

Theorem 6.2 (Normal subgroup test). Let N ⊆ G be a subgroup. Then,
following are equivalent:

1. N is normal in G

2. gNg−1 ⊆ N for all g ∈ G

3. gNg−1 = N for all g ∈ G

Proof. (1 =⇒ 2) Suppose N is normal, i.e., gN = Ng for all g ∈ G. So for any
g ∈ G, there exists n and n′ ∈ N such that gn = n′g. So, for any g ∈ G and
n ∈ N ,

gng−1n′

for some n′ ∈ N . But this means

gNg−1 = {gng−1 | n ∈ N} ⊆ N

(2 =⇒ 3) It suffices to show that N ⊆ gNg−1 for g ∈ G. Let n ∈ N and
let g ∈ G. By (2),

(g−1)N(g−1)−1 ⊆ N.
Thus,

g−1n(g−1)−1 ∈ N
but then

n = g
(
g−1n(g−1)−1

)
g−1 ∈ gNg−1

(3 =⇒ 1) We are given gNg−1 = N for all g ∈ G. So

gng−1 = n′

for some n ∈ N and n′ ∈ N . Then,

gn = n′g.

So for any g ∈ G,n ∈ N , gn ∈ gN is also in Ng since ng = n′g. So gN ⊆ Ng.
By a similar argument Ng ⊆ Ng.
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Remark. gN = Ng does not imply gn = ng for all g ∈ G and n ∈ N . It means
that there exists n and n′ such that gn = n′g.

Theorem 6.3. Let G be a group with a normal subgroup N . Then,

G/N = {all distinct let cosets}

is a group where the operation is

(aN)(bN) = (ab)N

Definition 6.3. G/N is called the factor group or quotient group.

Proof. (Step 1) First, we show that the operation is closed and well defined.
The operation is closed since abN ∈ G/N . To check for well definedness, we
need to show that if aN = a′N and bN = b′N , then

abN = a′b′N.

Let t ∈ abN , so t = abn. Since bn ∈ bN = b′N , there is n2 such that

bn = b′bn2.

Also, since N is normal,
b′N = Nb′.

So b′n2 = n3b
′ for some n3 ∈ N . Then,

t = abn = a(b′n2) = a(n3b
′) = (an3)b′.

So an3 = aN = a′N . So an3 = a′n4 for some n4 ∈ N . Then,

t = (an3)b′ = (a′n4)b′ = a′(n4b
′).

Since n4b
′ ∈ Nb′ = b′N , we have

n4b
′ = b′n5

for n5 ∈ N since N is normal. So

t = a′(n4b
′) = a′b′n5 ∈ a′b′N.

Thus, abN ⊆ a′b′N . A similar argument can be made for the other direction.
(Step 2 - identity) eN is the identity.
(Step 3 - inverse) If gN ∈ G/N , g−1N ∈ G/N and

(gN)(g−1N) = (gg−1)N = eN.

(Step 4 - associativity) Since operations in G is associative, this operation is
asociative.
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Example 6.1.5. Consier the following normal set:

D = {R0, R180} ⊆ D4.

Then,
D4/N = {R0N,R90N,Hn,D1N},

where
R0N = {R0, R180}
R90N = {R90, R270}
HN = {H,V }
D1N = {D1, D2}

Then, we can make the following operation table:

R0N R90N HN D1N
R0N R0N R90N HN D1N
R90N R90N R0N D1N HN
HN HN D1N R0N R90N
D1N D1N HN R90N R0N

Note that properties of G/N are related to property of G and N .

Theorem 6.4. Suppose N ⊆ G is normal. Then, the quotient G/N is abelian
if and only if ghg−1h−1 ∈ N for all g, h ∈ G.

Proof. G/N is abelian if and only if

• (gN)(hN) = (hN)(gN)

• ghN = (hg)N for all h, g ∈ N

• (gh)(hg)−1 ∈ N

• (gh)(g−1h−1) ∈ N

Theorem 6.5 (Cayley’s theorem for finite abelian groups). Let G be a finite
abelian group. If p is a prime such that p

∣∣|G|, then G has an element of order
p (a partial converse of Lagrange’s theorem)

Proof. If n = 2 ' Z2. Now, 2
∣∣|G| = 2 is the only prime that divides 2 and Z2

has an element of order 2.
Now, I claim that if G

N has an element of order m and |G| <∞, then G has
an elemnt of order m. First, suppose that gN has order m. So

(gN)m = gmN = eN.

If d = |g|, then (gN)d = gdN = eN . This means that

m|d ⇐⇒ d = mk.
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But then, |g| = mk implies |gk| = m.
Suppose n = |G| > 2. Let e 6= x ∈ G and let |x| = qm = 2 where q is a

prime. If q = p, then |xm| = p, and we are done. If q 6= p, then 〈xm〉 is a cyclic
group of order q. This is normal in G since G is abelian, so

Ḡ =
G

〈xm〉

is a group with |Ḡ| = |G|/q = n/q < n. Since p
∣∣|G| = n and p 6= q and p|n/q, so

p
∣∣|Ḡ|. By definition, Ḡ has an element of order p. By the claim, we then have
G has an element of order p.

Example 6.1.6. Observe that

|U(23)| = 22.

Since 2|22 and 11|22, this group has elemnts of order 2 and 11.

Example 6.1.7. Since |U(43)| = 42 = 2× 3× 7, U(43) has an element of order
2, 3, 7.

6.2 Simple groups

Definition 6.4. A group G is a simple group if it does not have any non-trivial
normal subgroups.

Theorem 6.6. If p is prime, Zp is simple.

Proof. If p is prime, the only subgroups of ZZp are the trivial subgroups. So it
can’t have nontrivial normal subgroups.

Theorem 6.7. For all n ≥ 3, An is simple.

Proof. We provide an outline of the proof instead:

1. For all n ≥ 3, An is generated by 3 cycles.

2. If N is a normal subgroup in An with n ≥ 3 and if N contains a 3 cycle,
then N = An.

3. If n ≥ 5, any normal subgroup N ≤ An contains a 3 cycle.

Then, steps 2 and 3 imply the theorem.

Example 6.2.1. If n = 3, A3 is also simple since |A3| = 3!
2 = 3, so A3 ' Z3.

Example 6.2.2. If n = 4, then An has a normal subgroup:

N = {(1), (12)(34), (13)(24), (14)(23)} ' Z2 × Z2

N does not have a 3-cycle.
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Remark. While An is simple if n ≥ 5, Sn is never simple except if n = 1 or
n = 2.

Theorem 6.8. For all n ≥ 3, A3 is normal in Sn.

Proof. We want to show that

σAσ−1 ⊆ An

for all σ ∈ Sn.
If σ = σ1σ2 · · ·σ2l is an even permutation, then so is σ−1. Let τ = τ1 · · · τ2m ∈

An. Then, στσ−1 consists of even number of permutations. So

sστσ−1 ∈ An.

If σ is odd, then στσ−1 still consists of even number of permutations. So

sστσ−1 ∈ An.

Corollary 6.1. Sn

An
' Z2

Proof. Note that ∣∣∣∣ SnAn
∣∣∣∣ =
|Sn|
|An|

=
n!(
n!
2

) = 2

Since there is only one group with order 2, Sn

An
' Z2.

Example 6.2.3. If G/N is abelian and N abelian, is G abelian? No, S3/A3 '
Z2 is abelian and A3 ' Z3 is abelian but S3 is not.
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7 Homomorphism

7.1 Homomorphism

Definition 7.1. Let (G, ∗) and (H, ◦) be two groups. A homomorphism is a
function, φ : G→ H such that

φ(a ∗ b) = φ(a) ◦ φ(b),

for all a, b ∈ G.

Note that we drop the bijection condition of an isomorphism.

Example 7.1.1. Define a map φ : Z→ Zn by

φ(a) = a mod n.

This is an isomorphism since

φ(a+ b) = (a+ b) mod n

= (a mod n) + (b mod n)

= φ(a) + φ(b)

Example 7.1.2. Consider φ : R∗ → R∗ defined by

φ(x) = |x|.

This is an isomorphism because

φ(ab) = |ab| = |a||b| = φ(a)φ(b)

Example 7.1.3. Consider φ : GL2(R)→ R∗ defined by

φ(A) = det(A)

This is an isomorphism because

φ(AB) = det(AB)

= det(A) det(B)

= φ(A)φ(B)

Theorem 7.1. Let φ : G→ H be any group homomorphism. Then,

1. φ(eG) = eH

2. φ(a)n = φ (an) for all n ∈ Z

3. φ(a)−1 = φ
(
a−1

)
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4. If N ⊆ G is a subgroup, then

φ(N) = {φ(n) | n ∈ N}

is a subgroup of H

5. If K is any group of H, then

φ−1(K) = {g ∈ G |phi(g) ∈ K}

is a subgroup of G. If K is normal, so it φ−1(K).

Proof. (1) Note that eG = eGeG. So

φ(eG) = φ(eGeG) = φ(eG)φ(eG)

We multiply both sides by φ(eG)−1, we have

eH = φ(eG)−1φ(eG) = φ(eG)−1φ(eG)φ(eG) = φ(eG)

(2) If n = 0, this is just 1. So suppose n ≥ 1:

φ(a)n = φ(a) · · ·φ(a)︸ ︷︷ ︸
n

= φ(an)

by homomorphism property. If n ≤ 1, then −n ≥ 1 so

φ(a)−n = φ(a−n)

On the other hand,

φ(a)n (φ(a)n)
−1

= φ(a)nφ(a)−n = eH

Also, since ana−n = eG, we have

φ(eG) = eH = φ(an)φ(a−n).

So
φ(an)φ(a−n) = φ(a)nφ(a)−n

Finally, we can cancel φ(a−n) with φ(a)−n to obtain

φ (an) = φ(a)n.

(3) This is property 2 with n = −1.
(4) Apply the usbgroup test to

φ(N) = {φ(n) | n ∈ N}

• (identity) Since eG ∈ N , and φ(eG) = eH , so eH ∈ φ(N).
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• (closure) Let a, b ∈ φ(N). THen,

a = φ(n1),

b = φ(n2),

for some n1, n2 ∈ N . Then,

ab = φ(n1)φ(n2) = φ(n1n2).

But n1n2 ∈ N . Since n1n2 ∈ N , so ab ∈ φ(N).

• (inverse) Let a ∈ φ(N), so a = φ(n1) for some n1 ∈ N . Then,

a−1 = φ(n1)−1 = φ(n−11 ).

But n−11 ∈ N since n1 ∈ N . So a−1 ∈ φ(N).

(5) We use a subgroup test to show that

φ−1(K) = {g ∈ G | φ(a) ∈ K}

is a subgroup.

• (identity) Since eH ∈ K and φ(eG) = eH , eG ∈ φ−1(K).

• (closure) take a, b ∈ φ−1(K). So φ(a) and φ(b) ∈ K. So φ(a)φ(b) ∈ K
since K is closed. But since φ(a)φ(b) = φ(ab), we have ab ∈ φ−1(k).

• (inverse) Take a ∈ φ−1(K). So φ(a) ∈ K and φ(a)−1 = φ(a−1) ∈ K. So
a−1 ∈ φ−1(K). Now, assume K is normal. We want to show that

gφ−1(K)g−1 ⊆ φ−1(K).

Take t ∈ gφ−1(K)g−1 so t = gag−1 with φ(a) ∈ K. Then,

φ(t) = φ(gag1)

= φ(g)φ(a)φ(g−1)

= φ(g)φ(a)φ(g)−1 ∈ φ(g)Kφ(g)−1 ⊆ K

Since K is normal, so it φ(t) ∈ K so t ∈ φ−1(K).

7.2 Kernels

Definition 7.2. If φ : G→ H is a group homomorphism, then the kernel of φ
is

Ker(φ) = {g ∈ G | φ(g) = eH}
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Example 7.2.1. Consider
φ : Z→ Zn

given by φ(a) = a mod n. Then,

Ker(φ) = {9,±n,±2n, . . . } = nZ.

Theorem 7.2. Let φ : G → H be any group homomorphism. Then, Ker(φ) is
a normal subgroup of G.

Proof. {eH} is a normal subgroup in H. So φ−1({eH}) is normal subgroup in
G. But

φ−1({eH}) = {g ∈ G | φ(g) ∈ {eH} ⇐⇒ φ(g) = eH}
= Kerφ

Remark. Given φ : G→ H a group homomorphism, G
Ker(φ) is a group also.

Theorem 7.3 (First isomorphism theorem). Let φ : G → H be any group
homomorphism with k = Ker(φ) and L = Im(φ). Then, G/K = Im(φ)

Example 7.2.2. f : Z→ Z4 is a group homomorphism when f(a) = a mod 4.
Then, Imf = Z4 because f is onto. Furthermore,

Kerf = {0,±4,±8, · · · } = 〈4〉.

By the first isomorphism theorem, Z/〈4〉 = Z4.

Lemma 7.1. Let φ : G → H be a group homomorphism with K = Ker(φ).
Then, φ(a) = φ(b) iff aK = bK.

Proof. (⇒) Suppose φ(a) = φ(b). Then, φ(a)φ(b)1 = eH . So

eH = φ(a)φ(b)−1 = φ(a)φ(b−1) = φ(ab−1).

So ab−1 ∈ K but this means aK = bK.
(⇐) If aK = bK, then ab−1 ∈ K. So

φ(ab−1) = φ(a)φ(b−1) = φ(a)φ(b) = eH .

But then φ(a) = φ(b).

Definition 7.3. Let G be a group with normal subgroup N. Then, the map
π : G→ G/N defined by φ(g) = gN is called the natural homomorphism.

Proof. We cliam that ϕ : G/K → Imφ given by ϕ(gK) = φ(g) is an isomor-
phism.

First, we want to show that ϕ is well-defined. Suppose aK = bK with
respect to ϕ(aK) = ϕ(bK). Now, ϕ(aK) = φ(a) and ϕ(bK) = φ(b), and by the
Lemma, φ(a) = φ(b). So φ(aK) = φ(bK).
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Now, we want to show that ϕ is a group homomorphism. Let aK, bK ∈ G/K.
Then,

ϕ(aKbK) = ϕ(abK)

= φ(ab)

= φ(a)φ(b)

= ϕ(aK)ϕ(bK)

Now, we want to show that ϕ is surjective. Let t ∈ Imφ. So there is a g ∈ G
such that φ(g) = t. But then gK ∈ G/K, and ϕ(gK) = φ(g) = t.

Finally, we want to show that ϕ is injective. Let aK, bK ∈ G/K. Suppose

ϕ(aK) = φ(a) = π(b) = ϕ(bK).

Since φ(a) = φ(b), by the Lemma, aK = bK so ϕ is injective.
So by these facts, G/K ' Imφ.

Example 7.2.3. For any n ≥ 1, Z/〈n〉 ' Z.

Proof. We have a group homomorphism f : Zn → Zn given by f(a) = a mod n.
Then,

Imf = Zn
Kerf = {a1 ± n, . . . } = 〈m〉

So by the first isomorphism theorem, Z/〈a〉 = Zn.

Example 7.2.4. Let Sn be the symmetric group with n ≥ 3. Define f : Sn →
Z2 by

f(σ) =

{
0 if σ is even

1 if σ is odd

This is a homomorphism.

Proof. Let σ1, σ2 ∈ Sn. Then,

1. σ1, σ2 both even:

f(σ1σ2) = 0 = 0 + 0 = f(σ1) + f(σ2)

2. σ1 even, σ2 odd:

f(σ1σ2) = 1 = 0 + 1 = f(σ1) + f(σ2)

3. σ1 odd, σ2 even: same as above

4. σ1, σ2 both odd:

f(σ1σ2) = 0 = 1 + 1 = f(σ1)f(σ2)
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Note that Ker(f) = An and Im(φ) = Z2. So Sn/An ' Z2.

Corollary 7.1. For n ≥ 3, An is is normal in Sn.

Proof. Since An is the kernel of some homomorphism, and because all kernels
are normal, An is normal.

Example 7.2.5. Suppose φ : Z30 → Z30 is a group homomorphism and
Ker(φ) = {0, 10, 20}. If φ(23) = 9, find all elements of Z30 that get mapped to
9, i.e. find all b such that φ(b) = 9.

We want all b such that

φ(23) = 9 ⇐⇒ 23 +K = b+K

⇐⇒ (23− b) ∈ K = {0, 14, 20}
⇐⇒ b = 3, 13, 23

Theorem 7.4. Let φ : G → H be a group homomorphism. Then, φ is one-to-
one if and only if Ker(φ) = {eG}. (Kernel measures injectivity)

Proof. (⇒) Assume φ is one to one with repsect to Ker(φ) = {eG}. Take
g ∈ Ker(φ). So

φ(g) = eH = φ(eG).

Since φ is one-to-one, g = eG.
(⇐) Assume Ker(φ) = {eG}. Suppose φ(a) = φ(b) ∈ H. Hence,

eH = φ(a)φ(b)−1

= φ(a)φ
(
b−1
)

= φ
(
ab−1

)
So ab−1 ∈ Ker(φ). So ab−1 = eG =⇒ a = b.

Theorem 7.5. If φ : G → H is injective, H has a subgroup isomorphic to G,
namely Im(φ).

Proof. φ injective implies that Ker(φ) = {eG}. By the first isomorphism theo-
rem, we find that G/{eG} ' Im(φ). But G ' G/{eG}. So G ' Im(φ)

Theorem 7.6. Suppose φ : G → H is an onto homomorphism with Ker(φ) =
K. If |G|, |H| <∞, then,

|G| = |k||H|

Proof. Since φ is onto, by the first isomorphism theorem, we have G/K = H.
So

|H| = |G/K| = |G|/|K| =⇒ |G| = |H||K|,

by the Lagrange’s theorem.

Definition 7.4. The trivial homomorphism φ : G → H is the homomorphism
φ(g) = eH for all g ∈ G.
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Here are some useful facts:

1. G/{eG} ' G.

2. G/G ' {eG}.

Example 7.2.6. Suppose φ : Zp → H with p a prime such that if φ is not the
trivial homomorphism, then φ is one-to-one.

For this example, it is sufficient to show that Ker(φ) = {0}. Note that Zp
only has trivial subgroups. Since the Kernel of φ is a subgroup of Zp, we know
that the kernel of φ is either equal to {0} or Zp. If Ker(φ) = Zp, then φ is the
trivial homomorphism so it must be that Ker(φ) = {0}.

Theorem 7.7 (Second isomorphism theorem). Let H be a subgroup of G (not
necessarily normal) and N a normal subgroup of G. Then,

1. HN = {hn|h ∈ H,n ∈ N} is a subgroup of G

2. N is normal in HN

3. H ∩N is normal in N

4. HN/N ' H/(H ∩N)

Proof. Here’s an idea of the proof:

1. Prove that HN is subgroup of G

2. Prove that N isnormal in HN and H ∩N is normal in H

3. Define a map φ : H → HN/N by φ(h) = hN

(a) Show φ is a homomorphism

(b) Show φ is onto

4. So 3 implies that H/Ker(φ) ' HN/N by the first isomorphism theorem

5. Show Ker(φ) = H ∩N .

Theorem 7.8 (Correspondance theorem). Let G be a group with a normal
subgroup N .

• If K is a subgroup such that N ⊆ K ⊆ G, then K/N is a subgroup of
G/N .

• If L is a subgroup of G/N , then there is a subgroup N ⊆ K ⊆ G such that
L = K/N .

Example 7.2.7. Consider G = Z8 and N = {0, 4}.
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• Subgroups of N ⊆ K ⊆ G:

1. N ⊆ N = {0, 4} ⊆ G
2. N ⊆ {0, 2, 4, 6} ⊆ G
3. N ⊆ G ⊆ G

• Subgroups of G/N ' Z8/N ' Z4

1. N/N = {0 +N}
2. {0, 2, 4, 6}/N = {0 +N, 2 +N}
3. G/N = {0 +N, 1 +N, 2 +N, 3 +H}

Theorem 7.9 (Third isomorphism theorem). Let G be a group with H and N
normal subgroups such that N ⊆ H ⊆ G. Then,

G/H ' (G/N)/(H/N)

Proof. Here’s a sketch of the proof:

1. Define a group homomorphism φ : G/N → G/H by φ(gN) = gH (need
to check that this is well-defined and a homomorphism)

2. Show that φ is onto

3. Show Ker(φ) = H/N ⊆ G/N .

Combining (1), (2), (3), and the first isomorphism gives

(G/N)/(H/N) ' G/H,

as required.

59



8 Rings

8.1 Introduction

Informally, a ring is an additive group with more structure.

Definition 8.1. A ring R is a set with two binary operations (usually addition
and multiplication) such that for all a, b ∈ R,

1. a+ b = b+ a

2. (a+ b) + c = a+ (b+ c)

3. There is an additive identity 0 ∈ R such that a+ 0 = 0 + a = a

4. There is an additive inverse (−a), i.e., for all a ∈ R, we have

a+ (−a) = (−a) + a = 0

5. (ab)c = a(bc)

6. a(b+ c) = ab+ ca and (a+ b)c = ac+ bc

Note that the first four conditions imply that a ring is an abelian group
under addition

Definition 8.2. A ring R has an identity if there is 1 ∈ R such that a1 = 1a = a
for all a.

Definition 8.3. A ring R is commutative if ab = ba for all a, b ∈ R.

Definition 8.4. A ring R is an (integral) domain if R has identity, is commu-
tative, and ab = 0 implies a = 0 or b = 0

Definition 8.5. A ring R is a division ring if R has an identity and if every
element a ∈ R has a multiplicative inverse, i.e., there exists a−1 ∈ R such that
aa−1 = 1.

Definition 8.6. A field is a division ring that is commutative.

Remark. If a ∈ R has a multiplicative inverse, we say a is a unit.

Example 8.1.1. Consider Z, a set of all integers.

• binary operations are regular + and ×.

• has an identity

• is commutative

• domain

• not a field since if a 6= 1,−1, 0, then a is not a unit

60



Rings

commutative rings rings with identity

integral domains division ring

fields

Example 8.1.2. Q,R,C are all rings. In fact, they are fields.

Example 8.1.3. Zn is a ring where operations are addition and multiplication
modulo n.

• binary operations are addition and multiplication modulo n

• commutative with identity

• not a domain because 2 × 3 = 0 mod 6 but 2 6= 0 and 3 6= 0. However,
Z2 is a domain (in fact a field).

Example 8.1.4. E = {2n|n ∈ Z} is a ring that is commutative without identity.

Example 8.1.5. M2(R), a set of all two by two real matrices, is a ring that is
not commutative but has an identity (the identity matrix).

Theorem 8.1 (Properties of a ring). Let a, b ∈ R, then

1. a · 0 = 0 · a = 0

2. a(−b) = (−a)b = −(ab)

3. (−a)(−b) = ab

If 1 ∈ R, then

4. (−1)a = −a

5. (−1)(−1) = 1

6. identity is unique
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Proof. (uniqueness of identity) Suppose 1 and 1′ are identities of R. Then,

1 = 11′ = 1′

So 1 = 1′.

Theorem 8.2 (uniqueness of inverses). If a ∈ R and a is a unit, then a−1 is
unique.

8.2 Subring

Definition 8.7. A subset S of a ring R is a subring if S is also a ring under
the operation of R.

Theorem 8.3. Let S ⊆ R be a subset of a ring R. Then, S is a subring if

1. S 6= ∅

2. rs ∈ S for all r, s ∈ S (closed under multiplication)

3. r − s ∈ S for all r, s ∈ S (closed under substraction)

Example 8.2.1. {0} ⊆ R and R ⊆ R are the trivial subrings.

Example 8.2.2. E = {2n|n ∈ Z} is a subring of Z. Note that Z has an identity
but E does not.

8.3 Integral Domains and Fields

Consider the following example:

Example 8.3.1. If R = Z6, then in this ring, 2, 3 6= 0 but 2× 3 = 0.

So two non-zero elements can multiply together to get 0.

Definition 8.8. A nonzero element a in ring R is called a zero divisor if there
is an nonzero element b in R such that ab = 0.

Example 8.3.2. 2 and 3 are zero divisors in Z6.

Definition 8.9. A commutative ring R with identity is an (integral) domain if
it has no zero divisors.

Example 8.3.3. Z,Q,R,C are all integral domains.

Theorem 8.4. Zn is domain if and only if n is prime.

Proof. Assume Zn is a domain. We want to show that n is prime. Instead, we
can prove the contrapositive statement: “If n is not prime, then Zn is not a
domain”. Since n is not prime, n = ab with 1 < a, b < n. Then, a 6= 0 and
b 6= 0 in Zn but ab ≡ n ≡ 0 mod n. So Zn has zero divisors, i.e., not a domain.

Suppose that n is prime. Suppose a, b ∈ Zn and ab = 0. We want to show
a = 0 or b = 0. Since ab ≡ mod n, this means ab = nk. So n divides ab. But
because n is prime, then n|a or n|b. But if n|a, then a = nl so a ≡= 0 mod n.
Similarly, if n|b, then b ≡ 0 mod n.
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Example 8.3.4. Consider

Z[
√

2] = {a+ b
√

2 | a, b ∈ Z}

This is a subring of R. It is also a domain.

Definition 8.10. If R and S are rings, then R×S is a ring with the following
operations:

(r1, s1) + (r2, s2) = (r1 + r2, s1 + s2)

(r1, s1)(r2, s2) = (r1r2, s1s2)

Example 8.3.5. Even if R and S are domains, R× S is not a domain.

Example 8.3.6. Consider R = S = Z. Z× Z is not a domain because

(1, 0)(0, 1) = (0, 0).

Domains have cancelation property, i.e., ab = ac implies b = c if a 6= 0. In
fact, we have the following theorem:

Theorem 8.5. Suppose ab = ac with a 6= 0. Then, R is a domain if and only
if cancellation holds.

Proof. (⇒) Suppose R is domain and ab = ac with a 6= 0. Then,

ab− ac = a(b− c) = 0

Since R is a domain and a 6= 0, b− c = 0 and b = c.
(⇐) Suppose that ab = 0 in R. If a = 0, we are done. So suppose a 6= 0.

Then, ab = 0 = a0. Thus, by cancellation property, b = 0.

Definition 8.11. A domain F is a field if for every 0 6= a ∈ F , there exists an
a−1 ∈ F such that aa−1 = 1 (every nonzero element of F is a unit).

Example 8.3.7. Q,R,C but not Z.

Theorem 8.6. If a domain is finite, then it is also a field.

Proof. Suppose that {a1, a2, . . . , an} are the non-zero element of our domain D.
We want to show that for every a ∈ D, we can find a−1 ∈ D such that aa−1 = 1.
Notice that ai = 1 since 1 ∈ D. Now, multiply everything in {a1, a2, . . . , an} by
a to get {aa1, aa2, . . . , aan}. If aai = aaj , by cancellation, we have ai = aj . So
when we multiply by a, we are shuffling all the elements. So aak = 1 for some
ak. But then, a−1 = ak So D is a field.

Corollary 8.1. Zp is a field for all prime p.

Example 8.3.8. Consider

Q[
√

2] = {a+ b
√

2 | a, b ∈ Q} ⊆ R.
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This is a field.
Take a+ b

√
2 ∈ Q[

√
2]. We want to find c+ d

√
2 such that

(a+ b
√

2)(c+ d
√

2) = 1.

So
(a+ b

√
2)(c+ d

√
2) =ac+ ad

√
2 + bc

√
2 + bd2 = 1

=⇒ (ac+ 2bd) + (ad+ bc)
√

2 = 1 + 0
√

2

By solving this, we find that

c =
a

a2 − 2b2
, d =

−b
a2 − 2b2

.

Definition 8.12. The characteristic of a ring R is the smallest positive integer
n such that for all r ∈ R, nr = r+ · · ·+ r = 0. If no such integers exist, we say
that the characteristic is 0. We write char(R) = n.

Example 8.3.9. Char(Zp) = p

Example 8.3.10. Char(Z) = 0

Lemma 8.1. If 1 ∈ R and order of 1 is n, i.e., n1 = 0, then Char(R) = n.

Theorem 8.7. If R is a domain, then Char(R) = 0 or p, a prime.

Proof. Suppose Char(R) 6= 0, i.e., Char(R) = n. If n is not a prime, then n = ab
with 1 < a, b < n. Then,

1 + · · ·+ 1︸ ︷︷ ︸
n

= 0.

Then,
(1 + · · ·+ 1)︸ ︷︷ ︸

a

+ (1 + · · ·+ 1)︸ ︷︷ ︸
a

+ · · ·+ (1 + · · ·+ 1)︸ ︷︷ ︸
a︸ ︷︷ ︸

b

= 0.

But ba = 0. Byt R is a domain so a = 0 or b = 0. This is a contradiction since
neither a nor b are equal to 0.
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9 Ideals

9.1 Ideals

Definition 9.1. A subring I of a ring R is an idean if for all x ∈ I and all
r ∈ R, rx and xr are in I. I is a proper ideal if I ⊂ R.

Example 9.1.1. Let R be any ring. The subring I = {0} is an ideal since

1. {0} is a subring of R

2. for all r ∈ R, and any x ∈ {0},

rx = xr = r0 = 0r = 0 ∈ {0}

I = {0} is the trivial ideal or zero ideal.

Example 9.1.2. Z ⊂ Q is a subring but not an ideal. Note 1 ∈ Z and 1/2 ∈ Q
but s1/2 · 1 /∈ Z.

Example 9.1.3. If R = Z and fix n ∈ Z, n > 0. Then,

〈n〉 = {0,±n,±2n, . . . }

is an ideal of R.

Proof. This set is a subring of Z. Take an elements a ∈ 〈n〉 and take any r ∈ Z.
Now, a = nl for some l ∈ Z. Then,

ra = ar = r(nl) = n(lr) ∈ 〈n〉

since Z is commutative.

Remark. If R is commutative, then we only need to check that rx ∈ I.

Theorem 9.1. Let R be a commutative ring with identity. For any a ∈ R, let
II be the set

I = {ra | r ∈ R}.

Then, I is an ideal of R.

Definition 9.2. An ideal of the form {ra | r ∈ R} for some a ∈ R is called the
principle ideal generated by a. We write this as I = 〈a〉.

Before we prove Theorem 9.1, we present a way to test for an ideal: A
nonempty set I ⊆ R is an ideal if

1. For all x, y ∈ I, x− y ∈ I.

2. For all x ∈ I and r ∈ R, rx, xr ∈ I

Here is the proof for Theorem 9.1:
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Proof. Since 1 ∈ R, a = 1 · a ∈ I. So I is not empty.

1. First, let x, y ∈ I = {ra | r ∈ R}. So x = ra and y = sa for r, s ∈ R.
Then, x− y = ra− rs.

2. Let x ∈ I and ∈ R. So x = ra and thus

tx = t(ra) = (tr)a ∈ I

since (tr) ∈ R.

Theorem 9.2. All ideals in Z are principal.

Theorem 9.3. Recall that only subgroups of Z are

nZ = {mn | m ∈ Z} = 〈n〉

But these are also ideals. For any ideal I ∈ Z, I is also an additive subgroup of
Z. So I = 〈n〉 for some n.

9.2 Factor rings

Let I be an ideal of a ring R. Then, R is abelian additive group, so I is a normal
subgroup of R. So as groups,

R/I = {a+ I | a ∈ R},

this factor is defined. We want to show that R/I also has a multiplication and
so is a ring. We call R/I a factor ring or a quotient ring and read it as R mod
I.

Theorem 9.4. Let R be a ring with ideal I. Then, the set of left cosets

{a+ I | a ∈ R}

forms a ring with operations:

(a+ I) + (b+ I) = (a+ b) + I

(a+ I)(b+ I) = (ab) + I

Proof. All additive properties hold because R/I is an additive group. First, we
wnat to check that multiplication is well defined. Suppose a + I = c + I and
b+ I = d+ I. Then, we want to show that

(a+ I)(b+ I) = (c+ I)(d+ I)

Given a− c ∈ I and b− d ∈ I, we have

(a− c)b = ab− cb ∈ Ic(b− d) = cb− cd ∈ I
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Then,
(ab− cb) + (cb− cd) = ab− cd ∈ I

So
ab+ I = cd+ I.

But then
(a+ I)(b+ I) = ab+ I

= cd+ I

= (c+ I)(d+ I)

So multiplication is well defined.
Now, we want to verify the ring operation with multiplication. Observe that

(a+ I)[(b+ I)(c+ I)] = (a+ I)(bc+ I)

= a(bc) + I

= (ab)c+ I

= (ab+ I)(c+ I)

= [(a+ I)(b+ I)](c+ I)

So multiplication is associative. Then,

(a+ I)[(b+ I) + (c+ I)] = (a+ I)[(b+ c) + I]

= a(b+ C) + I

= (ab = ac) + I

= (ab+ I) + (ac+ I)

= (a+ I)(b+ I) + (a+ I)(c+ I)

So multiplication is distributive.

Example 9.2.1. Consider R = Z and I = 〈5〉 = {5n | n ∈ Z}. Then, its
distinct cosets are given by

R/I = {0 + I, 1 + I, 2 + I, 3 + I, 4 + I}
By the theorem, Z/〈5〉 is a ring:

+ 0 + I 1 + I 2 + I 3 + I 4 + I
0 + I
1 + I
2 + I
3 + I
4 + I

× 0 + I 1 + I 2 + I 3 + I 4 + I
0 + I 0 + I 0 + I 0 + I 0 + I 0 + I
1 + I 0 + I 1 + I 2 + I 3 + I 4 + I
2 + I 0 + I 2 + I 4 + I 1 + I 3 + I
3 + I 0 + I 3 + I 1 + I 4 + I 2 + I
4 + I 0 + I 4 + I 3 + I 2 + I 1 + I
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9.3 Ring homomorphism

Definition 9.3. a function f : R→ S with R and S rings is a ring homomor-
phism if

• f(a+ b) = f(a) + f(b) for all a, b ∈ R

• f(ab) = f(a)f(b) for all a, b ∈ R

Definition 9.4. We say that R and S isomorphic if there exists a ring isomor-
phism f : R→ S, i.e., f is a homomorphism that is bijective.

Example 9.3.1 (Identity map). Let R = S. Define a map f : R → R by
f(r) = r. This is a ring isomorphism.

Remark. If R and S are isomorphic, we write R ' S.

Example 9.3.2 (Zero map). Let R and S be any rings. Then, f : R → S
defined by f(r) = 0s is a ring homomorphism.

Proof. Let a, b ∈ R. Then,

• f(a+ b) = 0s = 0s + 0s = f(a) + f(b)

• f(a)f(b) = 0s0s = 0s = f(ab)

Example 9.3.3. Define a function f : Z→ Z by

f(a) = a mod n.

We know this is a group homomorphism, so it satisfies the first part of the ring
homomorphism. Furthermore,

f(ab) = ab mod n = (a mod n)(b mod n) = f(a)f(b).

So this is a ring homomorphism

Remark. Zn ' Z/nZ = Z/〈n〉 (isomorphic as groups but also for rings)

Theorem 9.5. Let I be any ideal in R. Then, there is a homonorphism

π : R→ R/I

given by π(a) = a+ I (called the natural homomorphism).

Proof. Let a, b ∈ R. Then,

• π(a+ b) = (a+ b) + I = (a+ I) + (b+ I) = π(a) + π(b)

• π(ab) = ab+ I = (a+ I)(b+ I) = π(a)π(b)
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Theorem 9.6 (Properties of homomorphism). Let f : R→ S be a ring homo-
morphism

1. f(0R) = 0S

2. for any positive integer n and r ∈ R,

f(nr) = nf(r) and f(rn) = f(r)n

3. If I is an ideal of R, and if f is onto, then

f(I) = {f(g) | g ∈ I}

is an ideal of S

4. If 1R ∈ R, and f onto, f(1R) = 1S.

Proof. (1) Since 0R = 0R + 0R, we have

f(0R) = f(0R + 0R) = f(0R) + f(0R)

Since −f(0R) ∈ S, when we add this to both sides, we get

f(0R) + (−f(0R)) = f(0R) + (f(0R) + (−f(0R)))

0S = f(0R) + 0S = f(0R)

(2) Let’s fix some integer n > 0. Then,

f(nr) = f(r + · · ·+ r︸ ︷︷ ︸
n

) = f(r) + · · ·+ f(r) = nf(r)

Likewise,
f(rn) = f(r · r · · · r︸ ︷︷ ︸

n

) = f(r) · f(r) · · · f(r) = f(r)n

(3)

• (nonempty) Since 0R ∈ I and 0S = f(0R) ∈ f(I), this set is nonempty

• (closed under subtraction) Take a, b ∈ f(I). So there exists g, h ∈ I such
that a = f(g) and b = f(h). Then,

a− b = f(g)− f(h) = f(g − h)

But g − h ∈ I, so a− b ∈ f(I).

• (closed under absorption property) Let s ∈ S and a ∈ f(I. So there exists
g ∈ I such that a = f(g). Since f is onto, there exists an r ∈ R such that
f(r) = s. Then, rg ∈ I. So f(rg) ∈ f(I) but

f(rg) = f(r)f(g) = sa

So sa ∈ f(I).
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• Now, our goal is to show that sf(1R) = s for all s ∈ S. Since multiplicative
idensity is unique, f(1R) = 1S . So let’s take s ∈ S. Since f is onto, there
exists r ∈ R such that f(r) = s. Then,

sf(1R) = f(r)f(1R) = f(r1R) = f(r) = s

So f(1R) = 1S .

Definition 9.5. If f : R→ S is a ring homomorphism, then Kernel of f is

Ker(f) = {r ∈ R | f(r) = 0S}

Theorem 9.7. Ker(f) is an ideal of R.

Proof.

• (nonempty) Since f(0R) = 0S , 0R ∈ Ker(f).

• (subtraction) Let a, b ∈ Ker(f). Then,

f(a− b) = f(a)− f(b) = 0S − 0S = 0S

So a− b ∈ Ker(f).

• (absorption) Let a ∈ Ker(f) and r ∈ R. Then,

f(ra) = f(r)f(a) = f(r)0S = 0S

So ra ∈ Ker(f).

Theorem 9.8. Let I be any ideal of R and let π : R → R/I be the natural
homomorphism. Then, Ker(f) = I.

Proof. Let a ∈ I. Then,
π(a) = a+ I = 0 + I

since a ∈ I. So a ∈ Ker(π).
Let b ∈ Ker(π). So

π(b) = b+ I = 0 + I

So b− 0 = b ∈ I. So Ker(π) ⊆ I.

Remark. Any ideal I can be the Kernel of some ring homomorphism.
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9.4 First Isomorphism Theorem for rings

Lemma 9.1. Let f : R→ S be a ring homomorphism. Then,

f(R) = {f(r)|r ∈ R} ⊆ S

is a subring of S.

Proof.

• (nonempty) 0R ∈ R and so 0S = f(0R) ∈ f(R).

• (subtraction) Let a, b ∈ f(R). So there exist r, s ∈ R such that a = f(r)
and b = f(s). Then,

a− b = f(r)− f(s) = f(r − s)

since f is a homomorphism. But r − s ∈ R so a− b ∈ f(R).

• (multiplication) Let a, b ∈ f(R). Then, a = f(r) and b = f(s) for some
r, s ∈ R. So

ab = f(r)f(s) = f(rs)

and rs ∈ R. So ab ∈ f(R).

Lemma 9.2. Let f : R → S be a ring homomorphism. Then, f is one-to-one
if and only if

Ker(f) = {0R}

Proof. (⇒) Let b ∈ Ker(f). Then,

f(b) = 0S = f(0R)

Since f is one-to-one, this forces b = 0R. So Ker(f) = {0R}.
(⇐) Suppose f(a) = f(b). Then,

f(a)− f(b) = 0.

Since f is a homomorphism,

f(a− b) = f(a)− f(b) = 0S .

So a− b ∈ Ker(f) = 0R. Thus, a− b = 0R so a = b.

Theorem 9.9 (First isomorphism theorem for rings). Let f : R→ S be a ring
homomorphism. Then,

R/Ker(f) ' f(R).
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Proof. The proof is similar to the group proof but we need to check that they
are isomorphic as rings. So we want to find an isomorphism

φ : R/Ker(f)→ f(R).

We claim that the desired function is φ(r + Ker(f)) = f(r). First, we want
to show the wel-definedness. We need to check that

φ(r + Ker(f)) = φ(s+ Ker(f))

implies f(r) = f(s). So suppose that

r + Ker(f) = s+ Ker(f)

Since
r + Ker(f) = s+ Ker(f),

this means that r − s ∈ Ker(f). So

f(r − s) = 0S

But
f(r − s) = f(r)− f(s)

so
f(r)− f(s) = 0S ,

so f(r) = f(s).
Now, we want to show surjectivity. Let a ∈ f(R. So a = f(r) for some

r ∈ R. But then
r + Ker(f) ∈ R/Ker(f)

and
φ(r + Ker(f)) = f(r) = a

To show that it is injective, suppose b+ Ker(f) ∈ Ker(φ). This means

φ(v + Ker(f)) = f(b) = 0S .

So b ∈ Ker(f). Thus,
b+ Ker(f) = 0 + Ker(f)

So
Ker(φ) = {a+ Ker(f)}

Then, the lemma implies that φ is one-to-one.
Finally, notice that

φ(a+ Ker(f)) + φ(b+ Ker(f)) = f(a) + f(b)

= f(a+ b)

= φ((a+ b) + Ker(f))

φ(a+ Ker(f))φ(b+ Ker(f)) = f(a)f(b)

= f(ab)

= φ(ab+ Ker(f))

So φ is a homomorphism. Therefore, φ is an isomorphism.
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Example 9.4.1. Suppose f : F → S is a nontrivial ring homomorphis, (i.e.,
φ(x) 6= 0 for some x ∈ F ) and F is a field. Show that S has a subring isomorphic
to F .

Proof. (Homework) The only ideal of a field F are {G} and 〈1〉 = F .
By first isomorphism theorem,

F/Ker(f) ' f(F ) ⊆ S.

Since Ker(f) is an ideal, Ker(f) = 〈1〉 or Ker(f) = 〈0〉. But Ker(f) 6= 〈1〉 since
there is an element not sent to 0. So Ker(f) = 〈0〉. But then,

Ker(F ) ' F/〈0〉 ' F.

Example 9.4.2. Consider

Q(
√

2) = {a+ b
√

2 | a, b ∈ Q} ⊆ R

and
Q[x] = {all polynomials with coefficient in Q}

= {a0 + a1x+ a2x
2 + · · ·+ anx

n | n ∈ N, an ∈ Q}

Then, the following homomorphism is called evaluation homomorphism:

φ : Q[x]→ Q(
√

2)

where φ(f(x)) = f(
√

2) for f(x) ∈ Q[x].

Example 9.4.3. Consider f(x) = 1 + x+ x2. Then,

f(x)→ f(
√

2) = 1 +
√

2 + (
√

2)2

= 1 +
√

2 + 2

= 3 +
√

2

By the first isomorphism theorem,

Q[x]/Ker(φ) = Q(
√

2)

where
Ker(φ) = {f ∈ Q[x] | f(

√
2) = 0}.

Note that x2 − 2 ∈ Ker(φ). Then, one can prove that

Ker(φ) = 〈x2 − 2〉.

So
Q[x]/〈x2 − x〉 ' Q(

√
2)
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9.5 Prime and maximal ideals

Definition 9.6. An ideal M in a ring R is maximal if for every ideal J such
that M ⊆ J ⊆ R, we have J = M or J = R.

Example 9.5.1. Let R = Z and fix a prime p. Let 〈p〉 = {np|n ∈ Z} be the
ideal generated by p. Then, 〈p〉 is a maximal ideal.

Proof. Suppose J is an ideal such that

〈p〉 ⊆ J ⊆ Z

If J = 〈p〉, we are done. So suppose J 6= 〈p〉. Thus, there exists m ∈ J \ 〈p〉.
Since m /∈ 〈p〉, we have p 6 |m. So gcd(p,m) = 1. So

1 = pa+mb.

Since 〈p〉 ⊆ J , pa ∈ J . Since m ∈ J , mb ∈ J , so

1 = pa+mb ∈ J.

Then,
R ⊆ J ⊆ R =⇒ R = J.

Note 1 ∈ J implies that r · 1 ∈ J for all r ∈ R so r ∈ J for all r ∈ R.

Theorem 9.10. Let R be a commutative ring with 1 with ideal M . Then, M
is maximal if and only if R/M is a field.

Proof. (⇒) Since M is maximal, R/M 6= (0). Let

a+M ∈ R/M

such that a+M 6= 0 +M . So a 6= M . Consider the set

J = {m+ ar|m ∈M, r ∈ R}.

This set is an ideal of R. Since M ⊂ J but M 6= J , and since M is maixmal,
J = R. So 1 ∈ J . Thus, there exists m ∈M and r ∈ R such that

1 = m+ ar.

So ar − 1 = (−m) ∈M . Thus,

ar +M = 1 +M.

Then,
(1 +M) = (ar +M) = (a+M)(r +M).

So (a+M) is a unit. Thus, R/M is a field.
(⇐) Given R/M a field, we want to show that M is maximal. Suppose

M ⊆ J and J 6= M . Since J 6= M , there exists a ∈ J such that a ∈ M . But
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this means a+M 6= 0 +M in R/M . Since R/M is a field, there exists (r +m)
such that

(a+M)(r +M) = 1 +M

So ar +M = 1 +M , i.e., ar − 1 ∈M . Thus, ar − 1 ∈M ⊆ J and since a ∈ J ,
ar ∈ J . Thus,

ar − (ar − 1) = 1 ∈ J.

So J = R.

Example 9.5.2. For all primes p ∈ Z, Z/〈p〉 ' Zp is a field.

Definition 9.7. An ideal P of a ring R is prime if P ⊂ R but P 6= R and
whenever ab ∈ P , either a ∈ P or b ∈ P .

Example 9.5.3. In Z, every ideal generated by a prime p is a prime ideal.

Proof. Suppose ab = 〈p〉. So ol = ab for some l. Then, p|ab. Then, either p|a
or p|b. If p|a, a = pk, so a ∈ 〈p〉. If p|b, b = pk, so b ∈ 〈p〉.

Theorem 9.11. Let R be a commutative ring with identity and an ideal P ⊂ R
but P 6= R. Then, P is a prime ideal if and only if R/P is an integral domain.

Proof. (⇒) Suppose (a + P )(b + P ) = (0 + P ) in R/P . So ab + P = 0 + P .
Thus, ab ∈ P . Since P is prime, a ∈ P or b ∈ P . If a ∈ P , a+ P = 0 + P and
if b ∈ P , b+ P = 0 + P .

(⇐) Let ab ∈ P . So ab+ P = 0 + P . Thus,

0 + P = (a+ P )(b+ P ).

Since R/P is a domain, either a+P = 0 +P or b+P = 0 +P . Thus, a ∈ P or
b ∈ P .

Corollary 9.1. Every maximal ideal is a prime ideal in a commutative ring
with identity.

Proof.
M maximal ⇐⇒ R/M a field

=⇒ R/M a domain ⇐⇒ M prime

Example 9.5.4. Let I, J be ideals. Which of the following are ideals?

1. I ∩ J

2. I ∪ J

First one is an ideal.

• (nonempty) Consider 0 ∈ I and 0 ∈ J , so 0 ∈ I ∩ J .
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• (subtraction) Let a, b ∈ I ∩ J . So

a, b ∈ I =⇒ a− b ∈ I.

Likewise, a− b ∈ J . So A− b ∈ I ∩ J .

• (absorption) Similar to above.

Second one is not an ideal. Consider R = Z and I = 〈2〉 with J = 〈3〉. Then,

I ∪ J = {0, 2, 3, . . . }

is not closed under subtraction because 3− 2 = 1 /∈ I.

10 Polynomial rings

10.1 Polynomial rings

Example 10.1.1. 2 + πx+
√

3x2 + log 7x3

Definition 10.1. Let R be a commutative ring. The set of all polynomials with
coefficients in R is called the polynomail ring. We write

R[x] = {a0 + a1x+ · · ·+ anx
n | n ∈ N, ai ∈ R}

We sometimes call R[x] the polynomial ring over R with indeterminate x.

Remark. a0 + a1x + · · · anxn = b0 + b1x + · · · bmxm if and only if n = m and
ai = bi or all i.

Definition 10.2 (Addition).

(a0 + a1x+ · · ·+ anx
n) + (b0 + b1x+ · · ·+ bnx

n)

= (a0 + b0) + (a1 + b1)x+ · · ·+ (an + bn)xn

Definition 10.3 (Multiplication).

(a0 + a1x+ · · ·+ anx
n)(b0 + b1x+ · · ·+ bmx

m)

= (a0b0) + (a1b0 + a0b1)x+ (a2b0 + a1b1 + a0b2)x2 + · · ·+ (an + bm)xn+m

where the coefficient of xi in multiplication is

aib0 + ai−1b1 + · · ·+ a1bi−1 + a0bi

where aj = 0 if j > n and bj = 0 if j > m.

Definition 10.4. If f(x) = a0 + a1x + · · · anxn, with an 6= 0, then degree of
f(x) is

degf(x) = n

and an is called leading coefficient. If an = 1, we say f(x) is monic.

76



Example 10.1.2. Consider

f(x) = 2x+ 17x3 + 82x2017.

Then, the degree and leading coefficient of this polynomial is 2017 and 82.

Remark. 0 ∈ R[x] but by convention, deg 0 is not defined.

Theorem 10.1. If R is a commutative ring with identity, so is R[x].

Theorem 10.2. If R is an integral domain, then so is R[x].

Proof. We will show that deg(f(x)g(x)) = deg f(x)+deg g(x) for any f(x), g(x) ∈
R[x]. Let

f(x) = anx
n + · · ·+ a0

g(x) = bmx
m + · · ·+ b0

where an, bm 6= 0. So

f(x)g(x) + (anbm)xn+m + lower order terms.

Since an 6= 0 and bn 6= 0 and since R is a domain, anbm 6= 0. So deg f(x)g(x) =
n + m = deg f(x) + deg g(x). So this menas that the product of two nonzero
terms in R[x] is non-zero. Therefore,

R[x]

must be a domain.

Example 10.1.3. Consider R = Z4. Let

f(x) = 2x2 + 2 ∈ Z4[x], and g(x) = 2

Then,
f(x)g(x) = 2(2x2 + 2) = 0

so deg f(x)g(x) 6= deg f(x) + deg g(x)

So we can extend the construction to any number of variables:

R[x][y] = {f0 + f1y + f2y
2 + · · · fsys | fi ∈ R[x]}.

Likewise, we can define

R[x, y][z] = {g0 + g1z + · · · gtzt | gi ∈ R[x, y]}.
In general, we have R[x1, . . . , xn], a set of all polynomials in x1, . . . , xn with
coefficients in R.

Theorem 10.3 (Evaluation homomorphism). Let R be a commutative ring with
identity and α ∈ R. Then, the function φα : R[x]→ R given by f(x)→ f(α) is
a ring homomorphism called the evaluation homomorphism.

Example 10.1.4. If α = 0, then

φ0 : R[x]→ R

is given by
a0 + a1x+ · · ·+ anx

n → a0.

So φ0 takes polynomials to its constant term
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10.2 Division algorithm for polynomials

The ring Z and F [x] with F , a field, have similar properties.

Theorem 10.4. Let F be a field, and f(x), g(x) ∈ F [x] with g(x) 6= 0F . Then,
there exists unique polynomials q(x) and r(x) such that

f(x) = g(x)q(x) + r(x)

with r(x) = 0F or deg r(x) < deg g(x).

Example 10.2.1.

4x4 + 3x3 + 2x2 + x = (2x2 + 1)

(
2x2 +

3

2
x

)
+

(
−1

2
x

)

10.3 Division algorithm

Theorem 10.5. Let F be a field, and suppose f(x), g(x) ∈ F [x] with g(x) 6= 0F .
Then, there exists unique q(x), r(x) ∈ F [x] such that

f(x) = g(x)q(x) + r(x)

with r(x) = 0 or deg r(x) < deg g(x).

Proof of this theorem depends on strong induction: We assume that for each
n, a statement P (n) is given. If

• P (0) is true

• If P (0), P (1), . . . , P (n− 1) imply P (n) true,

then P (n) is true for all n ≥ 0.

Proof. First, we want to show that q(x) and r(x) exists. We can think of two
cases.

(Case 1 – deg f(x) < deg g(x)) Since deg f(x) < deg g(x),

f(x) = 0 · g(x) + f(x)

with deg f(x) < deg g(x). So q(x) = 0 and r(x) = f(x).
(Case 2 – deg f(x) ≥ deg g(x)) First, consider the case when 0 = deg f(x) ≥

deg g(x) ≥ 0. Then, f(x) = a and g(x) = b with a, b ∈ F . So

a = (b)(b−1a) + 0

where b−1a ∈ F since F is a field. So q(x) = b−1 and r(x) = 0.
Now, assume for all f(x), g(x) with n > deg f(x) ≥ deg g(x), there exists

q(x), r(x) with
f(x) = g(x)q(x) + r(x)
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with deg r(x) < deg g(x) or r(x) = 0. Now, we want to show that statement is
true if deg f(x) = n. So we have

f(x) = anx
n + an−1x

n−1 + · · ·+ a0

g(x) = bmx
m + · · ·+ b0

with n ≥ m.
Since bm 6= 0 and bm ∈ F , so is b−1m ∈ F . Consider the polyonmial h(x):

h(x) = f(x)− anb−1m xn−mg(x)

Note that
anb
−1
m xn−mg(x) = anb

−1
m xn−m(bmx

m + · · ·+ b0)

= anx
n + (lower order terms)

Since f(x) and anb
−1
m xn−mg(x) have the same leading terms, it is cancelled in

h(x). So
deg h(x) < deg f(x) = n

Now, we apply induction hypothesis to h(x) and g(x). So there exists q1(x) and
r1(x) such that

h(x) = g(x)q1(x) + r1(x)

with r1(x) = 0 or deg r1(x) < deg g(x). But then,

f(x) = h(x) + anb
−1
m xn−mg(x)

= [g(x)q1(x) + r1(x)] + anb
−1
m xn−mg(x)

= g(x)(q1(x) + anb
−1
m xn−m) + r1(x)

= g(x)q(x) + r(x)

with r(x) = 0 or deg r(x) < deg g(x). So we can always find q(x) and r(x).
Now, we want to show uniqueness. Suppose

f(x) = g(x)q1(x) + r1(x)

= g(x)q2(x) + r2(x)

with r1(x) = 0 or deg r1(x) < deg g(x) and r2(x) = 0 or deg r2(x) < deg g(x).
Thus,

g(x)q1(x) + r1(x) = g(x)q2(x) + r2(x)

So
g(x)(q1(x)− q2(x)) = r2(x)− r1(x).

If q1(x) − q2(x) 6= 0. then LHS has degree greater than deg g(x). But RHS
has degree less than or equal tomax{deg r2(x),deg r1(x)}, which is less than
deg g(x). This is a contradiction, so q1(x) = q2(x), which implies r1(x) =
r2(x).

Theorem 10.6. Let F be a field, and f(x) = F [x]. Then, f(a) = 0 if and only
if f(x) = (x− a)g(x).
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Before we prove the theorem, we want to prove the following lemma first:

Lemma 10.1. Let F be a field, f(x) ∈ F [x]. THen, for all a ∈ F ,

f(x) = (x− a)g(x) + f(a)

Proof. By division algorith,,

f(x) = (x− a)g(x) + r(x)

with r(x) = 0 or deg r(x) < deg(x− a) = 1. If r(x) = 0, f(x) = (x− a)g(x), so
f(a) = 0. So

f(x) = (x− a)g(x) + f(a)

IF deg r(x) < 1, then r(x) = c ∈ F . So

f(x) = (x− a)g(x) + c

but then f(a) = (a− a)g(a) + c = c So

f(x) = (x− a)g(x) + f(a)

So here is the proof for the theorem:

Proof. (⇒) By the lemma,

f(x) = (x− 1)g(x) + f(a).

If f(a) = a then f(x) = (x− a)g(x).
(⇐) If f(x) = (x− a)g(x) then f(a) = 0.

10.4 Irreducible Polynomials

Definition 10.5. Let F be a field and f(x) ∈ F [x], a non-constan polyno-
mail. If f(x) cannot be expressed as the product of two polynomials, g(x) and
h(x), with smaller degree, i.e., f(x) = g(x)h(x) with 0 < deg g(x),deg h(x) <
deg f(x), then f(x) is irreducible. Otherwise, f(x) is reducible.

Example 10.4.1. Every polynomial of degree 1 is irreducible, i.e., f(x) =
ax+ b.

Example 10.4.2. x2 +1 is irreducible in R[x] but is reducible in C[x] (x2 +1 =
(x− i)(x+ i)).

Lemma 10.2. Let f(x) ∈ F [x] with deg f(x) ≥ 2. If there an a ∈ F such that
f(a) = 0, then f is reducible.
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Proof. Recall that
f(x) = (x− a)q(x) + f(a).

If f(a) = 0, then f(x) = (x − a)q(x). Since deg f(x) ≥ 2, deg(x − a)q(x) =
deg(x− a) + deg q(x) ≥ 2. So deg q(x) ≥ 1, so f(x) is reducible.

Corollary 10.1. If f(x) is irreducible, then f(a) 6= 0 for all a ∈ F .

Note that the converse is not necessarily true. Even if f(a) 6= 0 for all a ∈ F ,
this does not mean that f(x) that f(x) is irreducible.

Example 10.4.3. x4 + 2x2 + 1 = (x2 + 1)(x2 + 1) is reducible bus no root in
R.

Theorem 10.7. Suppose deg f(x) = 2 or 3. Then, f(x) is irreducible if and
only if f(x) has no root in F .

Proof. Proving the if statement follows directly from the previous corollary.
Now, suppose f(x) was reducible. T hen, f(x) = g(x)h(x) with 1 ≤ deg g(x),deg h(x) ≤
deg f(x) and deg g(x) + deg h(x) = f(x). Since deg f(x) is either 2 or , at least
one of the polynomials must have degree 1.

Without loss of generality, we can assume that deg g(x) = 1, i.e. g(x) =
cx+ d. But then,

f(x) = (cx+ d)h(x)

=⇒ f(−c−1d) = 0

So f(x) has a root, contradicting our assumption. Therefore, f(x) must a
reducible.

Example 10.4.4. Show that x3 + x+ 1 is irreducible in Z3[x.]

Proof. Since deg ≤ 3, we can simply plug in all elements on Z5 and show that
there are no roots:

03 + 0 + 1 = 1 6= 0

13 + 1 + 1 = 3 6= 0

23 + 2 + 1 = 1 6= 0

33 + 3 + 1 = 1 6= 0

43 + 4 + 1 = 1 6= 0

10.5 Factor in Q[x]

If f(x) ∈ Q[x], then there exists c, a least common multiple of all the coefficients
in f(x) such that cf(x) ∈ Z[x]. So we can consider factoring in Q[x] equivalent
to factoring in Z[x].

Theorem 10.8. Let f(x) = anx
n + · · · + x0 ∈ Z[x]. If r 6= 0, and if r/x is a

root of f(x), then r|a0 and s|an.
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Proof. We are given

an

(r
s

)n
+ an−1

(r
s

)n−1
+ · · ·+ a1

(r
s

)
+ a0 = 0.

So multiply both sides by sn:

anr
n + an−1r

n−1s+ · · ·+ a1rs
n−1 + a0s

n = 0

⇐⇒ s
(
an−1r

n−1 + · · ·+ a0s
n−1) = −anrn

So s| − anrn but gcd(r, s) = 1. So s|an. Note that the above equation also
implies that

r(anr
n−1 + · · ·+ a1s

n−1) = −a0sn

So r|a0 for similar reasons.

Example 10.5.1. Find a root of

f(x) = 2x4 + 7x3 + 5x2 + 7x+ 3

in Q.

By the above result, r|3 and s|2 if r/s is a root. So

r|3 =⇒ r = ±1 or ± 3

r|2 =⇒ r = ±1 or ± 2

So the posible values of r/s are

(r,s) 1 -1 2 -2
1 1 -1 1/2 -1/2
-1 -1 1 -1/2 1/2
3 3 -3 3/2 -3/2
-3 -3 3 -3/2 3/2

So we just have to check 1,−1, 3,−3, 1/2,−1/2, 3/2,−3/2. We can also elimi-
nate all positive rationals because f(x) will be positive when x > 0. Then, we
find that

f(−1/2) = 0 and f(−3) = 0.

Theorem 10.9 (Eisenstein’s criterion). Let

f(x) = anx
n + · · · a0 ∈ Z[x]

If there exists a prime p such that p|a0, p|a1, . . . , p|an−1, p 6 |an and p2 6 |a0, then
f(x) is irreducible.

Example 10.5.2. Consider

f(x) = x17 + 6x13 − 15x4 + 3x2 − 0x+ 12

Using p = 3, we can conclude that f(x) is irreducible over Q[x].

Example 10.5.3. There are irreducible polynomials of every degree over Q[x].
For example, we can take f(x) = xn + p with p prime.
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10.6 Similarities between F [x] and Z
Definition 10.6. A plynomail d(f) ∈ F [x] is monic if its leading coefficient is
1.

A monic polynomail d(x) is the greatest common divisors of two polyno-
mials p(x) and q(x) if d(x)|p(x) and d(x)|q(x), and if d′(x) is any other monic
polynomial such that d′(x)|p(x) and d′(x)|q(x), then d′(x)|d(x). Like Z, we can
use the division algorithm to find gcd(p(x), q(x)).

Example 10.6.1. Consider

f(x) = 2x4 + 5x3 − 5x− 2

g(x) = 2x3 − 3x2 − 2x

Then,

(2x4 + 5x3 − 5x− 2) = (2x3 − 3x2 − 2x)(x+ 4) + (14x2 + 3x− 2)

(2x3 − 3x2 − 2x) = (14x2 + 3x− 2)

(
1

2
x− 12

49

)
+

(
−48

49
x− 24

49

)
(14x2 + 3x− 2) =

(
−48

49
x− 24

49

)(
−343

24
x+

49

12

)
+ 0

Then, we can rescale last nonzero remainder to make it monic to find that

gcd(f, g) = x+
1

2

Definition 10.7. An ideal I ⊆ R is principal if there exists e ∈ R such that

I = {re|r ∈ R} = 〈e〉.

Theorem 10.10. Every ideal of Z is principal.

Proof. If I = {0}, then I = 〈0〉. Suppose a ∈ I with a 6= 0. So either a or −a
is positive and is in I. So I has a smallest positive element, say c.

We claim that I = 〈c〉. Since c ∈ I, 〈c〉 ⊆ I. Let a ∈ I, By division
algorithm, a = cq + r with 0 ≤ r < c. If r 6= 0, then r = a− cq. But then,

a, c ∈ I =⇒ r ∈ I.

This contradicts the fact that c is the smallest element in I. So r = 0. So
a = cq ∈ 〈c〉. Thus, every ideal is principal.

Theorem 10.11. Every ideal of F [x] is principal.

Proof. If I = {0}, then I = 〈0〉. So suppose 0 6= p(x) ∈ I. If deg p(x) = 0, then
p(x) = k ∈ F . But then 1 ∈ I and 〈1〉 = I = R.

Suppose deg p(x) > 0. Let c(x) be the polynomial of smallest degree in I.
Let c(x) be the polynomail of smallest degree in I. Then, I claim that I = 〈c(x)〉.
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Since c(x) ∈ I, 〈c(x)〉 ∈ I. Let a(x) ∈ I. By division algorithem,

a(x) = c(x)q(x) + r(x)

with r(x) = 0 or deg r(x) < deg c(x). If r(x) 6= 0, then

r(x) = a(x)− c(x)q(x) ∈ I.

But this contradicts the fact that c(x) has smallest degree in I. So r(x) = 0.
Then, a(x) = c(x)q(x) ∈ 〈c(x)〉. So every ideal of F [x] is principal.

Definition 10.8. Let R be a commutative ring with identity. An integral do-
main R is a principal ideal domin (PID) if every ideal is principal.

Example 10.6.2. Z and F [x] are PIDs.

Note that not every integral domain is a PID.

Example 10.6.3. Consider the following domain:

R = Z[x].

Then,
I = 〈6, x〉 = {6f + xg|f, g ∈ R}

is not principal. Supppose
I = 〈6, x〉 = 〈c〉.

So
6 ∈ 〈c〉 =⇒ 6 = cl.

and
x ∈ 〈c〉 =⇒ x = ct

Since deg 6 = 0, this implies that

deg c = 0,

so c ∈ Z. So
x = ct =⇒ deg t = 1.

So t = ax+ b. Thus, x = cax+ cb But cb = 0, and

c 6= 0 =⇒ b = 0.

So a = c−1. So c is a unit in Z. So c = 1,−1. But then

〈c〉 = 〈1〉 = Z[x],

but 1 /∈ 〈6, x〉.

Definition 10.9. A domain D is a Euclidean domain if there is a function
v : D → N such that
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• If a, b are non-zero elements, v(a) ≤ v(a, b).

• If a, b ∈ D and b 6= q, then there exists q and r such that

a = bq + r

with r = 0 or v(r) < v(b). Here, v is called a valuation.

Example 10.6.4. Z is a Euclidean domain. v : Z→ N defined by v(a) = |a|.

Example 10.6.5. F [x] is a Euclidean domain. v : F [x] → N is given by
v(f(x)) = deg f(x).

Theorem 10.12. Every Euclidean domain is a PID.

Proof. Let v : D → N be the valuation. If I = {0}, then I = 〈0〉.
If I 6= {0}, let c ∈ I with v(c) smallest. I claim that I = 〈c〉. Since c ∈ I,

〈c〉 ⊆ I. Let a ∈ I. Since D is a Euclidean domain, ther exists q and r such
that

a = cq + r

with r = 0 or v(r) < v(c). If r 6= 0, then r(x) = a(x) − c(x)q(x) ∈ I with
v(r) < v(c). But this contradicts choice of c. So r = 0.
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