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1 Introduction to topology

1.1 What is topology?

Definition 1.1 (Topology). Let X be a set. A topology on X is a collection τ
of subsets of X satisfying:

• ∅ ∈ τ.

• X ∈ τ.

• The union of any collections of elements in τ is also in τ.

• The intersection of any finite collection of elements in τ is also in τ.

Definition 1.2. (X, τ) is a topological space.

Definition 1.3. The elements of τ are called the open sets.

Example 1.1. Consider X = {a, b, c}. Is τ1 = {∅, X, {a}} a topology?

Proof. Yes, τ1 is a topology. Clearly, ∅ ∈ τ1 and X ∈ τ1 so it suffices to verify
the arbitrary unions and finite intersection axioms.

Let {Vα}α∈A be a subcollection of τ1. Then, we want to show⋃
α∈A

Vα ∈ τ1.

If Vα = ∅ for any α ∈ A, then this does not contribute to the union. Hence, ϕ
can be omittied: ⋃

α∈A
Vα =

⋃
α∈A
Vα 6=∅

Vα.

If Vα = X for some α ∈ A, then⋃
α∈A

Vα = X ∈ τ1

and we are done. So we may assume Vα 6= X for all α ∈ A. Similarly, if Vα = Vβ
for α 6= β, then we can omit Vβ from the union. Since τ1 only contains ∅, X
and {a}, we must have ⋃

α∈A
Vα = {a} ∈ τ1.

Similarly, if any element of {Vα}α∈A is empty, then⋂
α∈A

Vα = ∅ ∈ τ1.

We can therefore assume Vα 6= ∅ for all α ∈ A. Again, repetition can be ignored
and any Vα that eqauls X can be ignored. Then,⋂

α∈A
Vα =

{
{a} ∈ τ1

X ∈ τ1
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Example 1.2. Consider X = {a, b, c}. Is τ2 = {∅, X, {a}, {b}} a topology?

Proof. No. Note that {a} ∈ τ2 and {b} ∈ τ2 but {a} ∪ {b} = {a, b} /∈ τ2.

Example 1.3. Consider X = {a, b, c}. Then, τ3 = {∅, X, {a}, {b}, {a, b}} is a
topology.

1.2 Set theory

Definition 1.4. If X is a set and a is an element, we write a ∈ X.

Definition 1.5. If Y is a subset of X, we write Y ⊂ X or Y ⊆ X.

Example 1.4. Suppose X is a set. Then, power set of X is the set P (X) whose
elements are all subsets of X. In other words,

Y ∈ P (X) ⇐⇒ Y ⊆ X

Note that P (X) is closed under arbitrary unions and intersections. Hence, P (X)
is a topology on X.

Definition 1.6. P (X) is the discrete topology on X.

Definition 1.7. The indiscrete (trivial) topology on X is {∅, X}.

Definition 1.8. Suppose U, V are sets. Then, their union is

U ∪ V = {x|x ∈ U or x ∈ V }.

Note that if U1, U2, . . . , U10 are sets, their union can be written as follows:

• U1 ∪ U2 ∪ · · · ∪ U10

•
10⋃
k=1

Uk

•
⋃

k={1,2,...,10}
Uk

Definition 1.9. Let A be any set. Suppose ∀α ∈ A, I have a set Uα. The union
of the Uα over α ∈ A is ⋃

α∈A
Uα = {x|∃α ∈ A, x ∈ Uα}.

Similarly, the intersection is⋂
α∈A

Uα = {x|∃α ∈ A, x ∈ Uα}.
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2 Functions

Definition 2.1. A function is a rule that assigns to element of a given set A,
an element in another set B.

Often, we use a formula to describe a function.

Example 2.1. f(x) = sin(5x)

Example 2.2. g(z) =
∑∞
n=0

zn

n!

Definition 2.2. A rule of assignment is a subset R of the Cartesian product
C ×D of two sets with the property that each element of C appears as the first
coordinate of at most one ordered pair belonging to R. In other words, a subset
R of C ×D is a rule of assignment if it satisfies

If (c, d) ∈ R and (c, d′) ∈ R, d = d′.

Definition 2.3. Given a rule of assignment R, we define the doamin of R to
be the subset of C consisting of all first coordinates of elements of R:

domain(R) ≡ {c | ∃d ∈ Ds.t. (c, d) ∈ R}

Definition 2.4. The image set of R is defined to be the subset of D consisting
of all second coordinates.

image(R) ≡ {d | ∃c ∈ C s.t. (c, d) ∈ R}

Definition 2.5. A function is a rule of assignment R, together with a set that
contains the image set of R. The domain of the rule of assignment is also called
the domain of f , and the image of f is defined to be the image set of the rule
of assignment.

Definition 2.6. The set B is often called the range of f . This is also referred
to as the codomain.

If A = domain(f), then we write

f : A→ B

to indicate that f is a function with domain A and codomain B.

Definition 2.7. Given a ∈ A, we write f(a) ∈ B for the unique element in B
associated to a by the rule of assignment.

Definition 2.8. If S ⊆ A is a subset of A, let

f(S){f(a) | a ∈ S} ⊆ B.

Definition 2.9. Given A0 ⊆ A, we can restrict the domain of f to A0. The
restriction is denoted

f |A0 ≡ {(a, f(a)) | a ∈ A0} ⊆ A×B.
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Definition 2.10. If f : A→ B and g : B → C then g ◦ f : A→ C is defined to
be

{(a, c) | ∃b ∈ B s.t. f(a) = b and g(b) = c} ⊆ A× C.

Definition 2.11. A function f : A → B is called injective (or one-to-one) if
f(a) = f(a′) implies a = a′ for all a, a′ ∈ A.

Definition 2.12. A function f : A → B is called surjective (or onto) if the
image of f equals B, i.e. f(A) = B., i.e. if, for every b ∈ B, there exists a ∈ A
with f(a) = b.

Definition 2.13. f : A→ B is a bijection if it is one-to-one and onto.

Definition 2.14. If B0 ⊆ B is a subset and f : A→ B is a function, then the
preimage of B0 under f is the subset of A given by

f−1(B0) = {a ∈ A | f(a) ∈ B0}

Example 2.3. If B0 is disjoint from f(A) then f−1(B0) = ∅.
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3 Relation

Definition 3.1. A relation on a set A is a subset R of A×A.

Given a relation R on A, we will write xRy ”x is related to y” to mean
(x, y) ∈ R.

Definition 3.2. An equivalence relation on a set is a relation with the following
properties:

• Reflexivity. xRx holds ∀x ∈ A.

• Symmetric. if xRy then yRx holds ∀x, y ∈ A.

• Transitive. if xRy and yRz then xRz holds ∀x, y, z ∈ A.

Definition 3.3. Given a ∈ A, let E(a) = {x |x ∼ a} denote the equivalence
class of a.

Remark. E(a) ⊆ A and it is nonempty because a ∈ E(a).

Proposition 3.1. If E(a) ∩ E(b) 6= ∅ then E(a) = E(b).

Proof. IAssume the hypothesis, i.e., suppose x ∈ E(a) ∩ E(b). So x ∼ a and
x ∼ b. By symmetry, a ∼ x and by transitivity a ∼ b.

Now suppose that y ∈ E(a). Then y ∼ a but we just saw that a ∼ b
so y ∼ b and y ∈ E(b). Hence, E(a) ⊆ E(b). Likewise, we can show that
E(b) ⊆ E(a).

Definition 3.4. A partition of a set is a collection of pairwise disjoint subsets
of A whose union is all of A.

Example 3.1. Consider A = {1, 2, 3, 4, 5}. Then, {1, 2} and {3, 4, 5} is a
partition of A.

Proposition 3.2. An equivalence relation in a set determines a partition of
A, namely the one with equivalence classes as subsets. Conversely, a partition1

{Qα|α ∈ J} of a set A determines an equivalence relation on A by: x ∼ y if
and only if ∃α ∈ J s.t. x, y ∈ Qα. The equivalence classes of this equivalence
relation are precisely the subsets Qα.

1 Note that J is an index set: Qα ⊆ A for each α ∈ J and Qα ∩ Qβ = ∅ if α 6= β.
Furthermore, ∪α∈J = A.
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4 Finite and infinite sets

Definition 4.1. A nonempty set A is finite if there is a bijection from A to
{1, 2, . . . , n} for some n ∈ Z+.

Remark. Consider n,m ∈ Z+ with n 6= m. Then, there is no bijection from
{1, 2, . . . , n} to {1, 2, . . . ,m}.

Definition 4.2. Cardinality of a finite set A is defined as follows:

1. card(A) = 0 if A = ∅.

2. card(A) = n if there is a bijection form A to {1, 2, . . . , n}.

Note that Z+ is not finite. How would you prove this? A sneaky approach
is that there is a bijection from Z+ to a proper subset of Z+.

Consider the shift map:
S : Z+ → Z+

where S(k) = k + 1. So S is a bijection from Z+ to {2, 3, . . . } ⊂ Z+, a proper
subset of Z+. On the other hand, any proper sbset B of a finite set A with
card(A) = n has card(B) < n. In particular, there is no bijection from A to B.
Therefore, Z+ is not finite.

Theorem 4.1. A non-empty set is finite if and only if one of the following
holds:

1. ∃ bijection f : A→ {1, 2, . . . , n} for some n ∈ Z+.

2. ∃ injection f : A→ {1, 2, . . . , N} for some N ∈ Z+

3. ∃ surjection g : {1, . . . , N} → A for some N ∈ Z+

Remark. Finite unions of finite sets are finite. Finite products of finite sets are
also finite.

Recall that if X is a set, then

Xw = πn∈Z+X = {(xn) | xn ∈ X∀n ∈ Z+}

the set of infinite sequences in X.
If X = {a} is a singleton, then Xw is also a singleton. Otherwise, if

card(X) > 1, then Xw is an infinite set.

Example 4.1. Consider X = {0, 1}. Then, Xw is a set of binary sequences.

Definition 4.3. If there exists a bijection from a set X to Z+, then X is said
to be countably infinite.

Definition 4.4. Let A be a nonempty collection of sets. An indexing family is
a set J together with a surjection f : J → A. We use Aα to denote f(a) ⊆ A.
So

A = {Aα | α ∈ J}
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Most of the time, we will be able to use Z+ for the index set J .

Definition 4.5 (Cartesian product). Let A = {Ai | i ∈ Z+}. Finite cartesian
product is defined as

A1 × · · · ×An = {(x1, . . . , xn) | xi ∈ Ai}

It is a vector space of n tuples of real numbers.

Definition 4.6 (Infinite Cartesian product). Infinite Cartesian product Rω is
an ω-tuple x : Z+ → R, i.e., a sequence

x = (xi)
∞
i=1 = (x1, x2, . . . , xn, . . . )

= (xi)i∈Z+

More generally, if A = {Ai | i ∈ Z+}. Then,∏
i∈Z+

Ai = {(ai)i∈Z+ | ai ∈ Ai}.

Definition 4.7. A set A is countable if A is finite or it is countably infinite.

Theorem 4.2 (Criterion for countability). Suppose A is a non-empty set.
Then, the following are equivalent.

1. A is countable

2. There is an injection f : A→ Z+

3. THere is a surjection g : Z+ → A

Theorem 4.3. If C ⊆ Z+ is a subset, then C is countable.

Proof. Either C is finite or infinite. If C is finite, it follows C is countable.
Assume that C is finite. We will define a bijection h : Z+ → C by induction.

Let h(1) be the smallest element in C2. Suppose

h(1), . . . , h(n− 1) ∈ C

and are defined. Let h(n) be the smallest element in C \ {h(1), . . . h(n − 1)}.
(Note that this set is nonempty.)

We want to show that h is inejctive. Let n,m ∈ Z where n 6= m. Suppose
n < m. So h(n) ∈ {h(1), . . . , h(n)} and

h(n) ∈ C \ {h(1), h(2), . . . , h(m− 1)}.

So h(n) 6= h(m).
We want to show that h is surjective. Suppose c ∈ C. We will show that c =

h(n) for some n ∈ Z+. First, notice that h(Z+) is not contained in {1, 2, . . . , c}
2 C 6= ∅ and every nonempty subset of Z+ has a smallest elemnt
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because h(Z+) is an infinite set. Therefore, there must exists n ∈ Z+ such that
h(n) > c. So let m be the smallest element with h(m) ≥ c. Then for all i < m,
h(i) < c. Then,

c /∈ {h(1), . . . , h(m− 1)}.
By definition, h(m) is the smallest element in

C \ {h(1), . . . , h(m− 1)}.

Then, h(m) ≤ c. Therefore, h(m) = c.

Corollary 4.1. Any subset of a countable set is countable.

Proof. Suppose A ⊂ B with B countable. Then, there exists an injection f :
B → Z+. The restriction

f |A : A→ Z+

is also injective. Therefore, A is countable by the criterion.

Theorem 4.4. Any countable union of countable is countable. In other words,
if J is countable and Aα is countable for all α ∈ J , then ∪α∈J is countable.

Theorem 4.5. A finite product of countable sets is countable.

Example 4.2. Z+ × Z+ is countable.

Note that a countable product of countable sets is not countable.

Example 4.3. Consider X = {0, 1}. Then, Xω binary sequence is not count-
able.

Proof. Suppose g : Z+ → Xω is a function. We will show g is not surjective by
contructing an element y 6= g(n) for any n ∈ Z+.

Write g(n) = (xn1, xn2, . . . ) ∈ Xω for each xni ∈ {0, 1}. Define

y = (y1, y2, . . . )

where yi = 1−xii. Clearly, y ∈ Xω but y 6= g(n) for any n since yn = 1−xnn 6=
xnn, the n-th entry in g(n).

Example 4.4. Let X be a set and {Vα}α∈I a collection of subsets of X. Show⋃
α∈I

(X − Vα) = X −
⋂
α∈I

Vα

Proof.

x ∈
⋃
α∈I

X − Vα ⇐⇒ ∃α ∈ I, x ∈ X − Vα

⇐⇒ ∃α ∈ I, x ∈ X,x /∈ Vα
⇐⇒ x ∈ X,∃α ∈ I, x /∈ Vα
⇐⇒ x ∈ X,x /∈

⋃
α∈I

Vα

⇐⇒ x ∈ X −
⋂
αinI

Vα
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5 Topological spaces

Definition 5.1 (Topology). Let X be a set. A topology on X is a collection τ
of subsets of X satisfying:

• ∅ ∈ τ.

• X ∈ τ.

• If {Vα}α∈I ⊆ τ, then
⋃
α∈I Vα ∈ τ.

• If {V1, . . . , Vn} ⊆ τ, then
⋂n
k=1 VkinI.

Remark. If τ is a topology, then {∅, X} ⊆ τ and τ ⊆ P(X), where P is a power
set.

Definition 5.2. Suppose τ, τ′ are topologies on X. We say τ is coarser than τ′

if τ ⊆ τ′. τ′ is finer than τ if τ ⊆ τ′.

Example 5.1. If X is a set and τ is a topology. Then, τ is coarser than the
discrete topology, P(X), and finer than the trivial topology, {∅, X}.

Note that if τ ⊆ τ′ and τ′ ⊆ τ, then τ = τ′.

Example 5.2. Define τf to consist of the subsets U of X wiith the property
that X − U is finite or all of X.

Lemma 5.1. τf is a topoology on X. This is defined as the finite complement
topology.

Proof. To show ∅ ∈ τf , notice that X − ∅ = X. So ∅ ∈ τf . To show that
X ∈ τf , notice that X −X = ∅, which is finite. So X ∈ τf .

To show that it is closed under arbitrary unions, suppose

{Vα}α∈I ⊆ τf .

It suffices to show that X −
⋃
α∈I Vα is finite. For this, note

X −
⋃
α∈I

Vα =
⋂
α∈I

(X − Vα).

X − Vα is finite so ⋂
α∈I

(X − Vα) ⊆ X − V ′α

for any α′ ∈ I which implies
⋂
α∈I X − Vα is finite.

For closure under finite intersections, let

{V1, . . . , Vn} ⊆ τf .
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Then,

X −
n⋂
k=1

Vk =

n⋃
k=1

(X − Vk)

is a finite union of finite sets and so it is finite.

Example 5.3. Consider X = R. Then, R−{0} is open in the finite complement
topology. R−{0, 3, 100} is open in τf . Note that (4,∞) is not open in τf because
its complement is not finite.

Remark. Assume τ is a topology on X.

• (X, τ) is a topological space.

• X is a topological space.

• U ∈ τ iff U is open in τ iff U is an open set.
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6 Basis for a Topology

Definition 6.1. Let X be a set. A basis for topology on X is a collection B of
subsets of X satisfying:

• ∀x ∈ X,∃B ∈ B, x ∈ B

• ∀B1, B2 ∈ B, if x ∈ B1 ∩ B2 then ∃B3 ∈ B such that x ∈ B3 and B3 ⊆
B1 ∩B2.

Example 6.1. Consider X = R2. Let B1 be a collection of interiors of circles
in R2. Then, B1 is a basis.

Example 6.2. Consider X = R2. Let B2 be collection of interiors of axis-
parallel rectangles. Then, B2 is a basis. Note that nontrivial intersection is
always a rectangle.

Definition 6.2. The topology generated by a basis B is the collection τ satisfy-
ing:

U ∈ τ ⇐⇒ ∀x ∈ U,∃B ∈ B, x ∈ B ⊆ U.

Example 6.3. Consider X = R with standard topology, τst. Consider U =
R− {0}. Then, U ∈ τst. Let x ∈ U :

1. (Case 1) x > 0. Let B = (0, x+ 1). Then, x ∈ B ⊆ R− {0}.

2. (Case 2) x < 0. Let B = (x− 1, 0). Then, x ∈ B ⊆ R− {0}.

Example 6.4. Let τf be finite complement topology on R. If U ∈ τf , then
U ∈ τst. So τf ⊆ τst.

Remark. (3,∞) is open in τst but not in τf .

Lemma 6.1. If B is a basis and τ is the topology generated by B, then τ is a
topology.

Proof. ∅ ∈ τ is vacuously true. If x ∈ ∅ then ∃B ∈ B such that x ∈ B and
B ⊆ ∅.

Now, we want to prove that X ∈ τ. Let x ∈ X. By the axioms for basis,
∃B ∈ B such that x ∈ B and B ⊆ X. Hence, X ∈ τ.

Let {Uα}α∈A be a collection of τ. Let

x ∈
⋃
α∈A
Uα.

Then, ∃B ∈ A with x ∈ UB. Since UB ∈ Tau, ∃B ∈ B such that x ∈ B and
B ⊆ UB. TheN, x ∈ B and B ⊆ UB. So τ is closed under arbitrary unions.

Let {V1, . . . , Vn} ⊆ τ. We want to use proof by induction to show that τ is
closed under finite intersections. When n = 1,

n⋂
k=1

Vk = V1 ∈ τ.
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Assume the claim is true for n. Then,

n+1⋂
k=1

Vk = Vn+1︸ ︷︷ ︸
W

∩
n⋂
k=1

Vk︸ ︷︷ ︸
W ′

Note W ∈ τ and W ′ ∈ τ by the induction hypothesis. If W ∩W ′ = ∅ then we
are done (∅ ∈ τ). Let x ∈ W ∩W ′. Then, x ∈ W and x ∈ W ′, implying that
∃B1, B2 ∈ B such that x ∈ B1 ⊆ W and x ∈ B2 ⊆ W ′. Hence, ∃B3 ∈ B with
x ∈ B3 ⊆ B1 ∩B2 ⊆W ∩W ′.

Example 6.5. Consider X = R. Define

(a, b) = {x ∈ R|a < x < b}

for a, b ∈ R. Show
Bst = {(a, b)|a, b ∈ R}

is a basis.

Let x ∈ R. Then,
x ∈ (x− 1, x+ 1) ∈ Bst.

For the second axiom, let (a, b), (c, d) ∈ Bst and assume x ∈ (a, b)∩ (c, d). Then,
x ∈ (c, b) ⊆ (a, b) ∩ (c, d).

Definition 6.3. The standard topology on R is the topology τst generated by
Bst.

Lemma 6.2. Suppose B and B′ are bases on X and τ and τ′ are the topologies
they generate. Then, the following are equivalent:

1. τ′ is finer than τ (τ ⊆ τ′)

2. ∀x ∈ X and ∀B ∈ B with x ∈ B, ∃B′ ∈ B′ with x ∈ B′ ⊆ B.

Proof. First, we want to show that 1 implies 2. Assume τ ⊆ τ′. Let x ∈ X and
B ∈ B such that x ∈ B. Since B generates τ, B ∈ τ. Then, B ∈ τ′. Since τ′ is
generated by B′,

∃B′ ∈ B with x ∈ B′ ⊆ B

Other direction is left to readers as an exercise.

Let X = R2. Consider B1, a collection of interior of circles, and B2, a
collection of interior of axis-parallel rectangles. Let τj be toplogies generated
by Bj where j = 1, 2.

Lemma 6.3. τ1 = τ2

14



Proof. (τ1 ⊆ τ2). We use the theorem from earlier. Let x ∈ R2 and x ∈ B1 ⊆
B1. We have to show that ∃B2 ∈ B2 with x ∈ B2 ⊆ B1. Since x ∈ B1, x sits
inside a circle. But we can always construct a rectangle B2 smaller than B1 but
contains x.

(τ2 ⊆ τ1). Let x ∈ R2 and B2 ∈ B2 with x ∈ B2. We can always take
B1 ∈ B1 to be a circle inside rectangle B2 and contains x. So x ∈ B1 ⊆ B2.

Lemma 6.4. Suppose (X, τx) and (Y, τY ) are topological spaces. Consider

X × Y = {(a, b)|a ∈ X, b ∈ Y }

Then,
B = {U × V |U ∈ τX , V ∈ τY }

is a basis on X × Y .

Proof. Let (a, b) ∈ X × Y . Then, X × Y ∈ B and (a, b) ∈ X × Y . Let
U1 × V1, U2 × V2 ∈ B and assume

(a, b) ∈ U1 × V1 ∩ U2 × V2.

Note
(U1 × V1) ∩ (U2 × V2) = (U1 ∩ U2)× (V1 ∩ V2) ∈ B.

So
(a, b) ∈ (U1 ∩ U2)× (V1 ∩ V2) ⊆ (U1 × V1) ∩ (U2 × V2)

Definition 6.4. The product topology is the topology generated by this basis.

Theorem 6.1. Suppose Bx and By are bases for τx and τy, respectively. Then,

{B1 ×B2|B1 ∈ Bx, B2 ∈ By}

is a basis for product topology on X × Y .

Example 6.6. (X, τx) = (R, τst) = (Y, τY ).

Definition 6.5. The standard topology on R2 is the product topology of the
(R, τst).

Remark. The theoremm tells us that R2 has a basis

{(a, b)× (c, d)|a, b, c, d ∈ R}

Suppose B is a basis for a topology τ on X.

• First, if B ∈ B, then B ∈ τ. Recall that

U ∈ τ ⇐⇒ ∀x = U,∃B′ = B, x ∈ B′ ⊆ U.

So let x ∈ B. Then, B′ = B satisfies the above condition (x ∈ B ⊆ B).
Hence, B ∈ τ.
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• Let U ∈ τ. Then, U is a union of elements in B. To prove this, let U ∈ τ.
By definition,

∀x ∈ U,∃Bx ∈ U

such that x ∈ Bx ⊆ U . Then,

{Bx}x∈U ⊆ τ.

Then, ⋃
x∈XU

B = U.

Suppose X,Y are topological spaces and equip X × Y with the product
topology. Define

π1 : X × Y → X

π2 : X × Y → Y

Define
S = {π−11 (U)|U ⊂ X} ∪ {π−12 |V ⊂ Y }

The collection S is called a subbasis. The product topology is obtained by
considering all unions of finite intersection of elements in S.

Definition 6.6. If X is a set, a subbasis is a collection S of subsets whose union
is X. This generates a topology by considering all unions of finite intersections
of things in S.
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7 The Subspace Topology

Definition 7.1. Let (X, τ) be a topological space and Y ⊆ X be any subset.
The subspace topology on Y is

τY = {U ∩ Y |U ∈ τ}

Lemma 7.1. τY is a topology.

Proof.

• ∅ ∩ Y = ∅ ∈ τY .

• X ∩ Y = Y ∈ τY .

• (Unions) Let {Vα}α∈A ⊆ τY , then Vα = Uα ∩ Y for some Uα ∈ τ. Then,

⋃
α∈A

Vα =
⋃
α∈A

(Uα ∩ Y ) =

(⋃
α∈A

Uα

)
∩ Y ∈ τY

Theorem 7.1. Suppose B is a basis for X and Y ⊆ X. Then,

{B ∩ Y |B ∈ B}

is a basis for the subspace topology on Y .

Example 7.1. Let X = R with B = {(a, b)|a, b ∈ R}. Consider

Y = [1,∞).

Then, the basis for this topology is given by

BY = {[1, a)|a ∈ R, a > 1} ∪ {(a, b)|a, b ∈ R, 1 ≤ a < b}

Example 7.2. (3, 7] /∈ τY because there does not exist open U ∈ τ (U ∈ B)
such that

(3, 7] = U ∩ [1,∞).

Proof. To yield contradiction, suppose there exists such U . Then,

7 ∈ (a, b) ∩ [1,∞).

So 7 ∈ (a, b) and 7 ∈ [1,∞). In other words, a < 7 < b.
Let ε = (b − 7)/2. Then, a < 7 + ε < b so 7 + ε ∈ (a, b) and 7 + ε ∈ [1,∞).

Then,
7 + ε ∈ (a, b) ∩ [1,∞) = (3, 7] =⇒ 3 < 7 + ε ≤ 7,

yielding contradiction.
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Example 7.3. Let X = R and Y = [0, 1]. A basis for the subspace on Y is

{(a, b)|0 ≤ a < b ≤ 1} ∪ {[a, b)|0 ≤ b ≤ 1} ∪ {(a, 1]|0 ≤ a ≤ 1}

Example 7.4. Consider a rectangle

R = [0, 1]× [2, 6].

There are two ways of thinking of topology on this rectangle. Since R ⊆ R2,
we can think of it as a subspace topology. We can also think of it as a product
topology. So are they same topologis in this case?

Theorem 7.2. Suppose X and Y are topological spaces and A ⊆ X and B ⊆ Y
are subspaces. Then, the product topology on A× B equals the topology A× B
inherits as a subset of X × Y .

Proof. In the subspace topology, basis element is given by

(A×B) ∩ (U × V )

where U ⊆ X and V ⊆ Y . Likewise, basis element of product topology is given
by

(A ∩ U)× (B ∩ V ).

But then
(A ∩ U)× (B ∩ V ) = (A×B) ∩ (U × V ).

18



8 The Order Topology

Let X be a set.

Definition 8.1. An order relation (or simple order or linear order) is relation
R on X so

1. (comparability) If x, y ∈ X and x 6= y. Then either xRy or yRx.

2. (Nonreflexivity) 6 ∃x ∈ X such that xRx.

3. (Transitivity)s If xRy and yRz then xRz.

Example 8.1. Define X ⊆ R and R =<. Then, R is an order relation

Proof.

1. If x 6= qy, either x < y or y < x.

2. 6 ∃x ∈ X such that x < x.

3. x < y, y < z =⇒ x < z.

If X has an order relation, we often denote it <. Suppose (X,<) is a set
with an order relation for a, b ∈ X.

Definition 8.2. (a, b) = {x ∈ X|a < x, x < b}.

Definition 8.3. (a, b] = {x ∈ X|a < x, x < b, or x = b}.

Definition 8.4. [a, b) = {x ∈ X|a < x, x < b, or x = a}.

Definition 8.5. a0 ∈ X is a minimal element if ∀x ∈ X, a0 ≤ x.

Definition 8.6. b0 ∈ X is a maximal element if ∀x ∈ X, x ≤ b0.

Definition 8.7. Suppose (X,<x) and (Y,<y) are simply ordered sets. The
dictionary order on X × Y is the order <x×y defined as follows:

(a1, b1) <X×Y (a2, b2)

if a1 <x a2 or a1 = a2 and b1 <y b2.

Example 8.2. Define X = Y = R and <x=<y=<, usual inequality. Then,

• (0, 0) <X×Y (1,−3) is true

• (0, 0) <X×Y (0,−3) is false.

Definition 8.8. Suppose (X,<) is a simply ordered set. Then, the order topol-
ogy on X is the one with basis elements: (a, b) for a, b ∈ X, [a0, b) for b ∈ X
provided a0 is the minimal element of X, and (a, b0] for a ∈ X provided b0 ∈ X
is the maximal element.
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Example 8.3. Consider X = [0, 1] with <, the standard inequality. The order
topology is the topology inherited as a subset.

Example 8.4. Consider (R2, <o) where <0 is the dictionary order. The order
topology is called the dictionary order topology.

Think about what this set looks like:

((0, 0), (1, 1))

Example 8.5. Let X be a set with the discrete topology (all subsets are open).
Show that

B1 = {{x}|x ∈ X}

is a basis.

Proof. Let x ∈ X then x ∈ {x} ⊆ B. Let B1, B2 ∈ B1 and x ∈ B1 ∩B2. Then,

B1 = {x} = B2

so x ∈ {x} ⊆ B1 ∩B2

Let τ1 be the topology generated by B1. We clearly have τ1 ⊆ τd, where
τd is the discrete topology. To show that τd ⊆ τ1, let U ∈ τd and let x ∈ U .
Then, x ∈ {x} ⊆ U and {x} ∈ B1. So the results follows by a theorem in section
13.

Example 8.6. Show that

B2 = {{x} × (a, b)|x, a, b ∈ R}

forms a basis for R× R with the dictionary order topology.

Proof. Assume that it’s a basis. We will show that the associated topology τ2
is the dictionary order topology τDO.

Note that if B ∈ B2, then ∃x, a, b ∈ R such that

B = {x} × (a, b) = ((x, a), (x, b)) = {y ∈ R× R|(x, a) <DO y <DO (x, b)}.

So this is open in τDO. So τ2 ⊆ τDO.
Let ((a1, b1), (a2, b2)) be a basis element in the dictionary order topology.

Let y ∈ ((a1, b1), (a2, b2)). Write y = (x1, y1). There are three cases:

1. a1 < x1 < a2

2. a1 = x1

3. a2 = x1

Here, we will prove case 1. Assume a1 < x < a2. Then,

y ∈ {x} × (y1 − 1, y1 + 1)
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Then, {x} × (y1 − 1, y1 + 1) ∈ B2 and also

{x} × (y1 − 1, y1 + 1) ⊆ ((a1, b1), (a2, b2))

Assuming these the topology on Rd × R has basis

{{x} × (a, b)|x, a, b ∈ R}.

This is exactly the basis that generates the dictionary order topology. So two
topologies are same.

Example 8.7. Let X = R. The set

B` = {[a, b)|a, b ∈ R}

is a basis. The topology it generates is called the lower limit topology on R. R
with the lower limit topology is denoted R`.

Remark. Lower limit topology is strictly finer than standard topology, i.e., every
open set in standard topology is open in lower limit topology but not vice-versa

Example 8.8. Is [0, 1) open in the standard topology? No [0, 1) is not open in
standard topology. If it were, then there would be some (a, b) ⊆ R such that

0 ∈ (a, b) ⊆ [0, 1).

But then
0 ∈ (a, b) =⇒ a < 0, b > 0

So a/2 ∈ (a, b). But a/2 < 0 so a /∈ [0, 1).

Example 8.9. Is (0, 1) open in R`? Yes because

(0, 1) =
⋃

x∈{y|y>0}

[x, 1).
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9 Interior and Closure

Recall De Morgan’s Laws:

•
⋃
α∈I(X \ Uα) = X \

⋂
α∈I Uα

•
⋂
α∈I(X \ Uα) = X \

⋃
α∈I Uα

Definition 9.1. If (X, τ) is a topological space then a subset A ⊆ X is called
closed if X \A is open, i.e., if X \A ∈ τ

If C is a collection of all closed sets in X,

1. X ∈ C

2. ∅ ∈ C

3. C is closed under arbitrary intersection.

4. C is closed under finite union.

Example 9.1. In R, consider Un = [1/n, 1 − 1/n] for n ∈ Z+. Un is a closed
interval for each n ∈ Z+. Hoever,⋃

n∈Z+

Un = (0, 1)

is open and not a closed set.

Definition 9.2 (Interior). Suppose (X, τ) is a topological space and A ⊆ X.
Define Int(A) to be the union of all open sets contained in A.

IntA =
⋃
α∈J

Uα

where {Uα, α ∈ J} consists of all Uα ∈ J such that Uα ⊆ A.

Observe that IntA is an open set. Notice also that Int(A) ⊆ A. So IntA is
the maximal open set contained in A. In other words, any open set V contained
in A is a subset of IntA.

Remark. If A is open, IntA = A.

Definition 9.3. The closure of A, denoted Ā, is defined as the intersection of
all closed sets that contain A:

Ā =
⋂
β∈K

Cβ ,

where {Cβ : β ∈ K} consists of all closed sets hat contain A.

Observe that Ā is a closed set because it is an intersection of closed sets.
Notice that A ⊆ Ā. Then, Ā is the smallest closed set that contains A, i.e. any
closed set that contains A must contain Ā.
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Remark. If A is closed, then A = Ā.

Example 9.2. If Uα, α ∈ J is a collection of sets with B ⊆ Uα for all α, then
B ⊆

⋂
α∈J Uα. Further, if B = U ′α for some α′ ∈ J , then

B =
⋂
α∈J

Uα ⊂ Uα′

for all α′.

Proposition 9.1.

• Int(X −A) = X − Ā

• (X −A) = X − Int(A).

Example 9.3. Define
X = {a, b, c}
τ = {∅, {a}, {a, b}, X}

Then,
C = {X, {b, c}, {c},∅}

Consider A = {a}. Then, IntA = {a} and Ā = X.
Consider B = {b}. Then, IntB = ∅ and B̄ = {b, c}.
Consider C = {c}. Then, IntC = X and C̄ = {c}.

Let
X = C = {x+ iy|x, y ∈ R}

Example 9.4. Consider

A = {reiθ|0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1orr1, θ ∈ Q}

Then,
IntA = {reiθ|0 < r < 1}
Ā = {reiθ|0 ≤ r ≤ 1}

Notice that if z ∈ Ā and U is an arbitrary open set in C containing z then
U ∩A 6= ∅.

Theorem 9.1. If A ⊆ X is any subset then X ∈ Ā if and only if every open
set U containing X intersects A nontrivially.

Proof. Recall Ā is a closed set, so X − Ā is open. We will show conversely that
x /∈ Ā if and only if there exists an open set U containing x such that U∩A = ∅.
But since X − Ā is open, if x /∈ Ā, then x ∈ X − Ā. Openness of X − Ā now
implies that there exists small open set U about x with U ⊆ X − Ā. As such,
U ∩ Ā = ∅, since A ⊆ Ā, it follows that U ∩A = ∅.
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Definition 9.4. If A ⊆ X is a subset,

Ā = {x ∈ X|U ∩A 6= ∅ for every open set U about X}.

Definition 9.5 (Limit point). A point X is a limit point of the set A if every
open set U about x satisfies (U − {x}) ∩A 6= ∅, i.e., we require U intersects A
in some point other than x. We write

A′ = {x|x is a limit point of A}.

Theorem 9.2. Ā = A ∪A′.

Proof.
(U − {x}) ∩A 6= ∅ =⇒ U ∩A 6= ∅

which implies A ⊆ Ā. But we already know that A ⊆ Ā. Then,

A ∪A′ ⊆ Ā.

Suppose x ∈ Ā. Either x ∈ A, in which case x ∈ A ∪ A′ or x /∈ A. In this
case, since x ∈ Ā, every open set U about satisfies U ∩ A 6= ∅. But x /∈ A so
x /∈ A. So

(U − {x}) ∩A 6= ∅.

So x ∈ A′.

Let X be a topological space with Y ⊆ X a subset. Regard Y as a topological
space using the subspace topology, i.e., V ⊆ Y is open in the subspace topology
if and only if there eixsts an open set U ⊆ X with V = U ∩ Y .

Theorem 9.3. In the subspace topology on Y , a subset B ⊆ Y is closed if and
only if B = A ∩ Y for some closed set A ⊆ X.

Proof.

B ⊆ Y is closed ⇐⇒ V = Y −B if open

⇐⇒ ∃U open in X such that V = U ∩ Y
⇐⇒ A = X − U is closed
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10 Sequences

Definition 10.1 (Convergnece). If {Xn} is a sequence of points in a topological
space X, we say {Xn} converges to x ∈ X if for every neighborhood U about x,
there exists integer N such that n ≥ N =⇒ Xn ∈ U .

Remark. In a general topological space, a sequence may converge to more than
one point.

Example 10.1. Consider the trivial topology:

τtriv = {∅, X}.

Every sequence converges and it converges to every point in X.

Example 10.2. Given X = {a, b, c}, consider the following topology:

τ = {∅, {a}, {a, b}, X}.

Then, the sequence Xn = b for all n converges to b as well as c but not to a.

Example 10.3. If X has the discrete topology, then show that a sequence
{Xn} is convergent if and only if {Xn} is eventually constant, i.e., ∃x ∈ X and
N ∈ Z+ such that

n ≥ N =⇒ Xn = X.

Definition 10.2. A topological space A is called Hausdorff if for any two dis-
tinct points x, y ∈ X there exists disjoint open sets U, V with x ∈ U and Y ∈ V .

Example 10.4. If {Xn} is a sequence of points in Hausdorff space, then if it
converges, the point it converges to is unique.

Theorem 10.1. If (X, τ) is Hausdorff, then every finite subset of X is a closed
set.

Remark. If X is Hausdorff, then every singleton {x} is closed.

Example 10.5. Consider

C =

{[
1

n
, 1− 1

n

]
|n ≥ 3

}
Then,

∞⋃
n=3

Cn = (0, 1)

is not closed in R.

Example 10.6. An infinite collection of open sets whose intersection is not
necessarily open. Consider

Un =

(
− 1

n
,

1

n

)
.
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Then,
∞⋂
n=1

Un = {0}

is closed in standard topology.

Definition 10.3. A topological space X in which all finite sets are closed is
called a T1 space.

Theorem 10.2. If (X, τ) is Hausdorff, then X is a T1 space. Note that converse
is not necessarily true.

Example 10.7. If X is inifinite and τ is finite complement topology is a T1
space but not Hausdorff.

Example 10.8. Notice if X is finite, then the every subset U ⊆ X has a finite
complement. So in this case, the finite complement topology is the same as the
discrete topology. So it is a T1 space and Hausdorff.

Theorem 10.3. If X is Hausdorff and {xn} is a convergent sequence converging
to x ∈ X, then the point x is unique. In this case, we say x is the limit of the
sequence {xn} and write

lim
n→∞

xn = x.

Theorem 10.4. If (X,<) is a simply ordered set, then it is Hausdorff in the
order topology.

Theorem 10.5. If X,Y are two topological spaces annd both are Hausdorff
then so is the product X × Y .

Theorem 10.6. If X is Hausdorff and Y ⊆ X is a subset, then Y is Hausdorff
in subspace topology.
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11 Continuous Functions

What does it mean to say that a function f : R→ R is continuous?

• ∀x ∈ R, limx→x+
0
f(x) = limx→x−0

f(x) = f(x0).

• limnto∞ xn = x0 =⇒ limn→∞ f(xn) = f(x0).

• ∀x0(∀ε > 0,∃δ such that |x− x0| < δ =⇒ |f(x)− f(x0)| < ε.

Definition 11.1. If f : X → Y is a function between two topological spaces
X,Y , then f is continuous if f−1(V ) is open for every open set V ⊆ Y .

Example 11.1. Consider f : R→ R`, where R` is the lower limit topology and
f(x) = x. This map is not continuous. Take V = [a, b). This is open in R` but
f−1(V ) = V is not open in the standard topology.

Example 11.2. g : R` → R with g(x) = x is continuous.

Example 11.3. If f : X → Y is the constant map f(x) = y0∀x ∈ X, then f is
continuous for any topology on X,Y .

Theorem 11.1. Let X,Y be two toplogical spaces and f : X → Y is a function.
If f : X → Y then the following are equivalent:

1. f is continuous

2. for all subsets A ⊆ X, f(Ā) ⊆ f(A)

3. for all closed sets B ⊆ Y , f−1(B) is closed in X

4. for each x ∈ X if V is open about f(x), then ∃ open set U about x such
that f(U) ⊆ V .

Example 11.4. Consider f : X → Y any function. If X has discrete topology,
f is automatically continuous.

Proof. Let U ⊆ Y be open. Then, f−1(U) is a subset of X. By the definition
of the discrete topology, f−1(U) is therefore open in X. Thus, it is true for all
open U ⊆ Y , so f is continuous.

Example 11.5. Consider Y = [0, 1) ⊆ R with standard topology on R. Find
the closure Ȳ .

We can define closure in three different ways:

1. Intersection of all closed sets containing Y

2. Ȳ = Y ∪ {limit points}

3. Ȳ is the smallest closed set containing Y .
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Note that [0, 1) ⊆ [0, 1] and [0, 1] is closed in standard topology ([0, 1] = R −
((−∞, 0) ∪ (1,∞))). This implies that Ȳ ⊆ [0, 1].

We also have [0, 1) ⊆ Ȳ . If Ȳ 6= [0, 1], then 1 /∈ Ȳ and Ȳ = [0, 1). However,
[0, 1) is not closed in standard topology and this is a contradiction. Therefore,
Y = [0, 1].

Example 11.6. Define X = [0,∞). Consider X × X with dictionary order
topology. Show that X ×X is Hausdorff.

Proof. Let (x1, y1), (x2, y2) ∈ X ×X with (x1, y1) 6= (x2, y2). We may assume
(x1, y1) < (x2, y2). There are 7 cases that we have to consider:

1. 0 < x1 < x2 and y1, y2 > 0

2. 0 = x1 < x2 and y1, y2 > 0

3. 0 = x1 = x2 and 0 < y1 < y2

4. 0 = x1 = x2 and 0 = y1 < y2

5. 0 < x1 < x2 and y1 = 0 or y2 = 0

6. x1 = x2 > 0 and y2 > y1 > 0

7. x1 = x2 > 0 and y1 = 0 or y2 6= 0

For case 1, consider

U1 =
((
x1, y1 −

y1
2

)
,
(
x1, y1 +

y1
2

))
U2 =

((
x2, y2 −

y2
2

)
,
(
x2, y2 +

y2
2

))
Then, there intersection is empty and (x1, y1) ∈ U1 and (x2, y2) ∈ U2.

Definition 11.2. Let X and Y be topological spaces. A function f : X → Y is
a homeomorphism if

1. f is continuous

2. f is bijective (so f−1 exists)

3. f−1 : Y → X is continuous

Example 11.7. Suppose X is a topological space. Then, identity function

Id : X → X

with Id(x) = x is a homeomorphism.

Example 11.8. If f : X → Y is homeomorphism, then f−1 : Y → X is a
homeomorphism.

Example 11.9. Consider f : R → R with f(x) = x3. Then, this is a homeo-
morphism. Furthermore,

f−1(y) = y1/3.
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12 The Product Topology

Definition 12.1. Let {Xα} be a collection of sets indexed by α ∈ J . Then,

∏
α∈J

Xα =

{
f : J →

⋃
α∈J

Xα, f(β) ∈ Xβ∀β ∈ J

}
.

Example 12.1. Consider J = {1, 2}. Then,∏
α∈J

Xα = {f : {1, 2} → X1 ∪X2|f(1) ∈ X1, f(2) ∈ X2}

= {(f1, f2)|f1 ∈ X1, f2 ∈ X2}
= X1 ×X2

More generally, if J = {1, 2, . . . , n}, then∏
α∈J

Xα = X1 ×X2 × · · · ×Xn

If J = Z+ = {1, 2, 3, . . . }, then we can write∏
α∈J

= X1 ×X2 ×X3 × · · ·

If J = Z+ and Xα = X∀α ∈ J , then∏
α∈J

Xα = X ×X × · · · = Xω.

Example 12.2. Consider J = R and let Xα = R∀α ∈ R. Then,∏
α∈J

Xα =
∏
α∈R

R

=

{
f : R→

⋃
αinR

R
∣∣ f(x) ∈ R∀x ∈ R

}
= {f : R→ R|f is a function}.

Definition 12.2 (Box topology). Let {Xα}α∈J be a collection of topological
spaces. The box topology on

∏
Xα is the one with basis{∏

α∈J
Uα
∣∣Uα ⊆ Xα open

}
Lemma 12.1. If Bα is a basis for Xα, then{∏

α∈J
Bα
∣∣Bα ∈ Bα}

is a basis for the box topology.
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Definition 12.3. For βinJ , define

πβ :
∏
α∈J

Xα → Xβ

Example 12.3. Consider J = {1, 2}. Then,∏
α∈J

Xα = X1 ×X2.

Furthermore,
π1 : X1 ×X2 → X1

π2 : X2 ×X2 → X2

Definition 12.4 (Product topology). The product topology on
∏
α∈J Xα is the

one with subbasis given by{
π−1β (Uβ)

∣∣Uβ ⊆ Xβ open , β ∈ J
}

If
∏
Xα is equipped with the product topology, we call

∏
Xα the product space.

Lemma 12.2. If Bα is a basis for Xα, then{
π−1β (Bβ)

∣∣Bβ ∈ Bβ , β ∈ J}
is a subbasis for the product topology.

Remark. If J is finite, then the box topology on
∏
Xα equals the product

topology.

Example 12.4. Consider J = Z+ with Xα = R. Then,∏
α∈J

Xα = Rω.

For example, a box topology can be∏
α∈J

Bα = B1 ×B2 ×B3 × · · · .

Then,
(−1, 1)× (−2, 2)× · · · × (−n, n)× · · ·

is a basis element in box topology.
On the other hand,

(−1, 1)× (−2, 2)× · · · × (−n, n)× · · ·

is not open in product topology.

(−1, 1)× (−2, 2)× · · · × (−n, n)× R× · · · × R · · ·

is open in product topology.
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Lemma 12.3. The collection{∏
α∈J

Uα
∣∣Uα ⊆ Xα is open , Uα = Xα for all but a finite number of α ∈ J

}

forms a subbasis for the product topology on
∏
α∈J Xα.

Example 12.5.
(−1, 1)× (−1, 1)× R× R× · · ·

is open in the product topology on Rω but

(−1, 1)× (−1, 1)× · · · × (−1, 1)× · · ·

is not open in product topology.
If we define π1 : Rω → R where π1(x1, x2, . . . , )→ x1. Then,

π−11 ((−1, 1)) = (−1, 1)× R× R× · · ·

is open in product topology. Likewise, we have

π−12 ((−1, 1)) = R× (−1, 1)× R× · · ·

open in product topology. Then,

π−11 ((−1, 1))× π−12 ((−1, 1)) = (−1, 1)× (−1, 1)× R× R× · · · .

is open in product topology. Note that we can only take finite intersections.

Example 12.6. Consider Rω = R× R× · · · with the product topology. Show

(−1, 1)×
(
−1

2
,

1

2

)
× · · · ×

(
− 1

n
,

1

n

)
× · · ·

is not open.

Solution. Recall that U is open if and only if ∀x ∈ U there exists B ∈ B a basis
element such that

x ∈ B ⊆ U.
Observe that

(0, 0, . . . , 0) ∈ U = (−1, 1)×
(
−1

2
,

1

2

)
× · · · ×

(
− 1

n
,

1

n

)
× ·.

Assume B is a basis element containing x. Then, we can write

B = V1 × V2 × · · · × Vm × R× R× · · ·

where Vl ⊆ R open and 1 ≤ l ≤ m. If B ⊆ U , then the following condition must
be satisfied:

R ⊆
(
− 1

m+ 1
,

1

m+ 1

)
.

This is false. So B 6⊆ U . Therefore, U is not open.
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Example 12.7. Is the following function continuous? f : R→ R2 where

f(t) = (cos(t), t2 + et)

Theorem 12.1. Let {Xα} be topological space and give
∏
Xα the product topol-

ogy. Let

f : A→
∏

Xα

be any function. Then, f is continuous if and only if πα ◦ f : A → Xα is
continuous ∀α ∈ J .

Example 12.8. Let J = Z+. Then,∏
Xα = X1 ×X2 × · · ·

Consider f : A→ X1 ×X2 × · · · with

f(a) = (f1(a), f2(a), . . . )

f1 = π1 ◦ f
f2 = π2 ◦ f

...

Note that fα = πα ◦ f is the α-th component of f .

Example 12.9. Recall that the product topology has subbasis

S = {
−1∏
α

(U) |U ⊆ Xα open , α ∈ J}

So πβ :
∏
Xα → Xβ is continuous ∀β ∈ J .

Now, we will prove the theorem.

Proof. (⇒) If f is continuous, then πα ◦ f is continuous because composition of
continuous functions is continuous.

(⇐) Assume πα ◦f is continuous ∀α ∈ J . Let π−1α (U) ⊆
∏
Xα be a subbasis

element. Then,
f−1

(
π−1α (U)

)
= (πα ◦ f)

−1
(U).

Then, this is open because the composition map (πα ◦ f) is assumed to be
continuous and U ⊆ Xα is open.

Recall that a basis for product topology is∏
α∈J

Uα

where Uα ⊆ X where Uα = Xα for all but a finite number of α ∈ J . Note

π−1β (Uβ) =
∏
α∈J

Uα

where Uα = Uβ if α = β and Uα = Xα if α 6= β.
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Example 12.10. Consider
∏
Xα = R× R. Then,

π−11 ((−1, 1)) = (−1, 1)× R.

On the other hand, the basis from S is

π−1α1
(Uα1

) ∩ · · · ∩ π−1αn (Uαn) =
∏
α∈J

Uα

where Uα = Uαj if α = αj and Uα = Xα otherwise. Hence,

x ∈ π−1β (Uβ)

if and only if
πβ(x) ∈ Uβ

if and only if the β-composition of x is in Uβ (no restriction on the other com-
ponents).

Example 12.11. Consider f : R→ Rω where

f(t) = (t, t, t, . . . ).

By the previous theorem, this is continuous in the product topology on Rω.
However, this is not continuous with the box topology on Rω.

Proof. Consider

U = (−1, 1)×
(
−1

2
,

1

2

)
× · · · ×

(
− 1

n
,

1

n

)
× · · ·

We will show that f−1(U) is not open in R.
We claim that f−1(U) = {0}. If t ∈ f−1(U), then f(t) ∈ U . Note that

(t, t, t, . . . ) ∈ U

So
t ∈ (−1, 1)

t ∈
(
−1

2
,

1

2

)
...

t ∈
(
− 1

n
,

1

n

)
...

So |t| < 1/n∀n. This implies that t = 0. Conversely, f(0) ∈ U .
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13 Metric Topology

Definition 13.1. Let X be a set. A metric on X is a function d : X ×X → R
satisfying

1. d(x, y) ≥ 0∀x, y ∈ X and d(x, y) = 0 ⇐⇒ x = y

2. ∀x, y ∈ X, d(x, y) = d(y, x)

3. (triangle inequality) ∀x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z)

Definition 13.2. (X, d) is a metric space.

We can think d(x, y) as the ”distance” between x and y.

Definition 13.3. Let x ∈ X and ε > 0. We can define

Bd(x, ε) = {y ∈ X|d(x, y) < ε},

the ball of radius epsilon centered at x, relative to the metric d.

Example 13.1. Define d : X ×X → R as follows:

d(x, y) =

{
0 if x = y

1 if x 6= y

We want to verify three axioms.

1. 1 ≤ 0 and d(x, y) = 0 iff x = y

2. x = y ⇐⇒ y = x and x 6= y ⇐⇒ y 6= x

3. Note that d(x, z), d(x, y), d(y, z) are all either equal to 0 or 1. The triangle
inequality can only fail if

d(x, z) = 1 and d(x, y) + d(y, z) = 0

Note that

d(x, y) + d(y, z) = 0 =⇒ d(x, y) = 0, d(y, z) = 0 =⇒ x = y, y = z

This implies that x = z by transitivity and d(x, z) = 0. This yields
contradiction because we assumed d(x, z) = 1. So the triangle inequality
does not fail.

Example 13.2. Let X = R and define d as above. Sketch the ball with radius
1 centered at 0. Sketch Bd(0, 2).

Note that
Bd(0, 1) = {y ∈ R|d(0, y) < 1} = {0}

and
Bd(0, 2) = {y ∈ R|d(0, y) < 2} = R.
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Example 13.3. Let X = R and define d : R× R→ R where

d(x, y) = |x− y|.

We want to check that d is a metric.

1. d(x, y) = |x− y| ≥ 0. Furthermore,

d(x, y) = 0 ⇐⇒ x− y = 0 ⇐⇒ x = y.

2.
d(x, y) = |x− y| = | − y + x| = | − (y − x)| = |y − x| = d(y, x)

3.

d(x, z) = |x− z| = |x− y + y − z| ≤ |x− y|+ |y − z| = d(x, y) + d(y, z)

Example 13.4. Define d as in previous example. Then,

Bl(3, ε) = {y ∈ R|d(3, y) < ε} = {y ∈ R||3− y| < ε}

Note that |3− y| < ε is equivalent to 3− y < ε and −(3− y) < ε. Rearranging,
we have

Bl(3, ε) = {y ∈ R| − ε+ 3 < y < ε+ 3} = (3− ε, 3 + ε)

Lemma 13.1. Let (X, d) be a metric space. The collection

B = {Bl(X, ε)|x ∈ X, ε ∈ (0,∞)}

forms a basis. The induced topology is called the metric topology if (X, τ) is a
topological space and τ is induced from a metric as above (∃ a metric d so τ is
in the metric associated to d then we call (X, τ) metrizable)

Example 13.5. Consider X with

d(x, y) =

{
0 if x = y

1 if x 6= y

The metric topology is the discrete topology. Bd(x, 1) = {x} are contained in
the basis.

Example 13.6. Consider X = R with d(x, y) = |x − y|. Then, the metric
topology is the standard topology and the basis is Bd(x, ε) = (x− ε, x+ ε).

Example 13.7. Consider X = Rn where n ≥ 1. Then, for x, y ∈ X, we can
write

x = (x1, x2, . . . , xn)

y = (y1, y2, . . . , yn)

Let
d(x, y) =

√
(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2
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Lemma 13.2. This is a metric called the Euclidean metric. For n = 2, Bd(x, ε)
is a circle centered at x with radius ε.

Example 13.8. Consider X = Rn and define

ρ(x, y) = (|x1 − y1|, . . . , |xn − yn|)

When n = 2 Bρ(X, ε) forms a square whose sidelength is 2ε. For example,

Bρ(0, ε) = {y|max(|y1|, |y2|) < ε}

Example 13.9. Show every metric space is Hausdorff.

Proof. Let x1, x2 ∈ X with x1 6= x2. Set ε = 1
2d(x1, x2). Since x1 6= x2, so

ε > 0. Hence,
x1 ∈ Bd(x1, ε) and x2 ∈ Bd(x2, ε)

Also,
Bd(x1, ε) ∩Bd(x2, ε) = ∅

because if z ∈ Bd(x1, ε) ∩Bd(x2, ε), then

d(x1, x2) ≤ d(x1, z) + d(z, x2)

< ε+ ε

= d(x1, x2)

which is a contradiction.

14 Comparing metrics

Consider X = Rn and x, y ∈ X such that

x = (x1, . . . , xn)

y = (y1, . . . , yn)

Recall that Euclidean metric is defined as

d(x, y) =
√

(x1 − y1)2 + · · ·+ (xn + yn)2

and the square metric is defined by

ρ(x, y) = max{|x1 − y1|, . . . , |xn − yn|}
= max

i
{|xi − yi|}

Consider Bd(0, ε). By definition,

Bd(0, ε) = {y|d(0, y) < ε}

= {(y1, . . . , yn)|
√
y21 + · · ·+ y2n < ε}

= {(y1, . . . , yn)|y21 + · · ·+ y2n < ε2}
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is the interior of a radius-ε sphere. On the other hand,

Bρ(0, ε) = {(y1, . . . , yn)|max
i
{|xi − yi|}}

= (−ε, ε)× (−ε, ε)× · · · × (−ε, ε)

Hence, when n = 2, Bd(0, ε) is a circle of radius ε and Bρ(0, ε) is a square whose
side lengths are 2ε. We know how to compare two toplogies generated by these
metrics but how can we compare the metrics?

Lemma 14.1. Suppose d and d′ are metrics on X and τ and τ′ are their
respective topologies. The following are equivalent:

1. τ ⊆ τ′

2. ∀x ∈ X,∀ε > 0,∃δ > 0 such that Bd′(x, δ) ⊆ Bd(x, ε).

Proof. Assume τ ⊆ τ′. Let x ∈ X and ε > 0. By Lemma 13.3, there exists a
basis element B′ for τ′ so

x ∈ B′ ⊆ Bd(x, ε).
We have B′ = Bd′(y, r) for some y ∈ X and r > 0. Let δ = r − d′(x, y). Since
x ∈ Bd′(y, r), we have δ > 0.

We claim that Bd′(x, δ) ⊆ Bd′(y, r). Let z ∈ Bd′(x, δ). Then,

d′(z, y) ≤ d′(, x) + d′(x, y)

< δ + d′(x, y)

= r

This implies that z ∈ Bd′(y, r). Hence,

Bd′(x, δ) ⊆ B′ ⊆ Bd(x, ε)

So this proves the second statement.
Now, assume that the second statement is true. Let Bd(x, ε) be a τ -basis

element. Let y ∈ Bd(x, ε) then the assumed statement implies that we can find
δ > 0 such that

y ∈ Bd′(y, δ) ⊆ Bd(x, ε)
Then, τ ⊆ τ′ follows by Lemma 13.3.

Theorem 14.1. The topologies on Rn coming from the Euclidean metric and
the square metric are equivalent. These both equal the product topology.

Proof. Let τρ be the topology coming from the square metric ρ and τd that
coming from the euclidean metric d. Note

ρ(x, y) = max
i
{|xi − yi|}

= |xi∗ − yy∗ | for some i∗ ∈ {1, 2, . . . , n}

=
√

(xi∗ − yi∗)2

≤
√

(x1 − y1)2 + · · ·+ (xn − yn)2

= d(x, y)
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So
Bd(x, ε) = {y|d(x, y) < ε}

⊆ {y|ρ(x, y) < ε}
= Bρ(x, ε).

By the previous lemma, τρ ⊆ τd.
For the reverse inequality,

d(x, y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2

=
√

(xi∗ − yi∗)2 + · · ·+ (xi∗ − yi∗)2

=
√
n(xi∗ − yi∗)2

=
√
nρ(x, y).

This implies that Bρ(x, ε/
√
n) ⊆ Bd(x, ε). Therefore, τd ⊆ τρ

Finally, we want to prove that ρ-topology equals the product topology. Let
(a1, b1)× · · · × (an, bn) be a product topology basis element and

(x1, . . . , xn) ∈ (a1, b1)× · · · × (an, bn).

Set
ε = min

i∈{1,...,n}
{|xi − ai|, |xi − bi|}

Then,
(x1, . . . , xn) ∈ (x1 − ε, x1 + ε)× · · · × (xn − ε, xn + ε)

⊆ (a1, b1)× · · · × (an, bn),

where

(x1 − ε, x1 + ε)× · · · × (xn − ε, xn + ε) = Bρ((x1, . . . , xn), ε)

Conversely, let

Bρ((x1, . . . , xn), ε) = (x1 − ε, x1 + ε)× · · · × (xn − ε, xn + ε)

and y ∈ Bρ(x, ε). Then,

y ∈ Bρ(x, ε) ⊆ Bρ(x, ε)

Example 14.1. For 1 ≤ p <∞, then

dp((x1, . . . , xn), (y1, . . . , yn)) = ((x1 − y1)p + · · ·+ (xn − yn))
1/p

on Rn. This is a metric on Rn.
We want to draw Bdp(0, 1) for different values of p. When p = 1, we have

a rhombus. When p = 2, we have a circle. When p > 2, we get a ”fat” circle.
Note that

Bdp(0, 1) = {(x, y)|xp + yp = 1} =⇒ y = ±(1− xp)1/p
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As p→∞, we get a square. Hence,

lim
p→∞

dp(x, y) = ρ(x, y)

Example 14.2. Consider

X = C0([0, 1]) = {f : [0, 1]→ R | f is continuous}.

For 1 ≤ p <∞, define

dp(f, g) =

(∫ 1

0

|f(x)− g(x)|pdx
)1/p

.

This is a metric on X. When p = 2, d2 is very important in physics.

Theorem 14.2. Suppose (X, dX) and (Y, dY ) are metric spaces (with the metric
topology). Let f : X → Y be a function. Then, f is continuous if and only if

∀x ∈ X ∀ε > 0 ∃δ > 0 such that dX(x, y) < δ =⇒ dy(f(x), f(y)) < ε

Proof. Assume f is continuous. Let x ∈ X and ε > 0. Since f is continuous and
Bdy (f(x), ε) is open, it follows that f−1(Bdyf(x), ε) is open in X. Note that

x ∈ f−1(Bdyf(x), ε) =⇒ ∃δ > 0

such that
x ∈ Bdx(x, δ) ⊆ f−1(Bdyf(x), ε).

Assume y ∈ X satisfies dx(x, y) < δ. Then, y ∈ Bdx(x, δ), so

y ∈ f−1(Bdyf(x), ε).

Hence, f(y) ∈ Bdy (f(x), ε). So

dy(f(x), f(y)) < ε.

Conversely, assume the δ − ε condition. Let U ⊆ Y be open. If U = ∅ then
f−1(∅) = ∅ is open. More generally, if f−1(U) = ∅, then we’re done. We may
assume ∃x ∈ f−1(U). Note f(x) ∈ U since U is open. Then, there exists ε > 0
such that

f(x) ∈ Bdy (f(x), ε) ⊆ U.

The δ − ε condition implies that there exists δ > 0 such that

dx(x, y) < δ =⇒ dy(f(x), f(y)) < ε.

So Bx(x, δ) ⊆ f−1(U). That is, for every x ∈ f−1(U), there exists δ > 0 so that

x ∈ Bdx(x, δ) ⊆ f−1(U).

So f−1(U) is open.
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Example 14.3. Show the function m : R× R→ R defined as

m(a, b) = a+ b

is continuous.

Proof. Let dR×R be a square metric. Consider (a, b), (a2, b2) ∈ R× R. Then,

dR×R((a, b), (a2, b2)) < δ =⇒ |a− a2|+ |b− b2| < δ.

Note that
dR(m(a, b),m(a2, b2)) = |m(a, b)−m(a2, b2)|

= |a+ b− a2 − b2|
= |a− a2 + b− b2|
≤ |a− a2|+ |b− b2| < δ < ε

Similarly, we can show that subtraction, multiplication, and divisions (as
long as we don’t divide by 0) are continuous functions R× R→ R.

Corollary 14.1. Suppose f, g : X → R are continuous where X is a topological
space. Then,

f + g : X ×X → R
(x, y) 7→ f(x) + g(x)

f − g : X ×X → R
(x, y) 7→ f(x)− g(x)

f · g : X ×X → R
(x, y) 7→ f(x)g(x)

are continuous with the product topologyon X ×X.

Proof. Note that f + g is the composition of

X ×X → R× R
(x, y) 7→ (f(x), g(y))

R× R→ R
(s, t) 7→ s+ t

These are continuous so the composition is continuous.

Definition 14.1. Let X be a set and (Y, d) a metric space. Suppose

fn : X → Y

is a sequence of functions. Then, (fn)n∈Z+
converge uniformly to f : X → Y if

∀ε > 0 ∃N ∈ Z+ ∀n ≥ N ∀x ∈ X d(fn(x), f(x)) < ε
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Theorem 14.3. Sppose X is a topological space and (Y, d) is a metric space.
Suppose (fn) is a sequence of functions converging uniformly to f : X → Y . If
each fn is continuous then f is continuous.

Proof. Let V ⊆ Y be open. We want to show that f−1(V ) ⊆ X is open. It is
sufficient to show that

∀x0 ∈ f−1(V ) ∃U open in X such that x0 ∈ U ⊆ f−1(V )

Consider V = Bd(f(x0), ε) ⊆ Y . Then, take

U = f−1n (Bd(fn(x0), ε/3)) ⊆ X

is open. We want to show that

1. x0 ∈ f−1n (Bd(fn(x0), ε/3))

2. f−1n (Bd(fn(x0), ε/3)) ⊆ f−1(Bd(f(x0), ε))

The first part is true if and only if fn(x0) ∈ Bd(fn(x0), ε/3). This is clearly true
because d(fn(x0), fn(x0)) = 0 < ε/3.

Now, we want to prove the second statement. Let x ∈ f−1n (Bd(fn(x0), ε/3)).

x ∈ f−1(Bd(f(x0), ε)) ⇐⇒ f(x) ∈ Bd(f(x0), ε)

⇐⇒ d(f(x), f(x0)) < ε.

Hence, it suffices to show that this is true.
Observe that

d(f(x), f(x0)) ≤ d(f(x), fn(x)) + d(fn(x), f(x0))

≤ d(f(x), fn(x)) + d(fn(x0), f(x0)) + d(fn(x), fn(x0))

Since fn(x) ∈ Bd(fn(x0), ε/3), it folows that d(fn(x), fn(x0)) < ε/3. Since fn
converges to f uniformly, there exists N such that

d(fn(y), f(y)) < ε/3

for all y ∈ X and for all n ≥ N . For such n, we have

d(fn(x0), f(x0)) < ε/3

d(fn(x), f(x)) < ε/3

Then, it follows that

d(f(x), f(x0)) <
ε

3
+
ε

3
+
ε

3
= ε.
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15 Connectedness

Definition 15.1. Suppose X is a topological space. A separation of X is a pair
U, V ⊆ X such that

• U 6= ∅ is open

• V 6= ∅ is open

• U ∩ V = ∅

• U ∪ V = X

Definition 15.2. X is connected if it does not have a separation.

Lemma 15.1. X is connected if and only if the following holds: If U ⊆ X is
open and closed, then U = ∅ or U = X.

Proof. (⇒) Assume X is connected and U ⊆ X is open and closed. Then,
V = U c = X−U is also open and closed. So U, V are both open and X = U ∪V
and U ∩ V = ∅. But X is connected so either U = ∅ or V = ∅.

(⇐) Assume that X satisfies the condtion of the lemma. Suppose U and V
are open, non-empty sets such that U ∩ V = ∅ and U ∪ V = X. Then, V = U c

so U is open and closed. So U = ∅ (contradition) or U = X implying that
V = ∅ (again, contradiction).

Example 15.1. Consider X = {1, 2} with discrete topology. This is not con-
nected:

U = {1}, V = {2}
satisfies the conditions.

Example 15.2. Consider X = {1, 2} with trivial topology. Then, X is con-
nected. Assume U ⊆ X is both open and closed. Since we are in a trivial
topology, U = ∅ or U = X.

Example 15.3. R under standard topology and (a, b), [a, b], (a, b], [a, b) under
subspace topology are connected.

Example 15.4. Q with subspace topology is not connceted. In particular,
U = (−∞, π) ∩Q, V = (π,∞) ∩Q is a separation.

Theorem 15.1. Suppose X is connected and f : X → Y is continuous. Then,
Im(f) = {f(x)|x ∈ X} is connected in the subspace topology coming from Y .

Proof. Set z = Im(f) ⊆ Y with the subspace topology. Define

g : X → Z

x 7→ f(x)

we claim that g is continuous. Let U ⊆ Z be open. Then, U = Z ∩ U ′ where
U ′ ⊆ Y is open. Then, g−1(U) = f−1(U ′) is open in X. We therefore assume f
is surjective.

42



Now, we want to prove the theorem. Let U ⊆ Y be closed, open and
nonempty. It suffices to show that U = Y . If f is continuous, f−1(U) is open
and closed. If f is surjective and U 6= ∅. Then, f−1(U) 6= ∅. By the lmma and
connectivity of X, f−1(U) = X. This implies that U = f(X) = Y .

Theorem 15.2. Suppose A ⊆ X is a subspace and A is connected. If A ⊆ B ⊆
Ā, then B is connected.

Proof. Assume B is not connceted so there is a separation U, V of B. Then,

U = B ∩ U ′

V = B ∩ V ′

for U ′, V ′ ⊆ X open. Note that U ′∩A, V ′∩A are open in A, disjoint, and cover
A. It follows U ′∩A = ∅ or V ′∩A = ∅. Assume V ′∩A = ∅. Then, Ā ⊆ Ū ′. In
fact, since A ⊆ B, we actually have A ⊆ U = U ′ ∩B so Ā ⊆ Ū . Hence, B ⊆ Ū .
Then, V 6= ∅ so there exists b ∈ V ⊆ B. So ∃Q ⊆ B open where b ∈ Q ⊆ V .
But B ⊆ Ū so b ∈ Ū . So every neighborhood of b intersects U . But U ∩V = ∅.
So this is a contradiction.

Remark. All intervals in R are connected.

Example 15.5. Consider

A = {(x, sin(1/x)) | x ∈ (0, 1/π)} ⊆ R2.

Then, A is the image of

f : (0, 1/π)→ R2

x 7→ (x, sin(1/x)).

This is continuos. So A is connceted and hence Ā ⊆ R2 is connected. (A is the
topologist’s sine curve).

Theorem 15.3. Suppose X is a topological space and {Aα} is a collection of
connected subspaces (Aα ⊆ X and Aα is connected). If

⋂
αAα 6= ∅ then

⋃
αAα

is connceted.

Proof. Assume U, V is a separation of
⋃
αAα. Let p ∈

⋂
αAα. WLOG, we may

assume p ∈ U . Fix α. Then, once of U ∩Aα or V ∩Aα is empty because Aα is
connected. Since p ∈ U ∩ Aα, we must have V ∩ Aα = ∅. So U ∩ Aα = Aα so
Aα ⊆ U . Then, ⋃

α

Aα ⊆ U.

Since U, V is a separation,
⋃
Aα = U ∪V so V = ∅. This is a contradiction.

Theorem 15.4. Suppose X,Y are conncted. Then, X × Y is connected.
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Proof. Fix (a, b) ∈ X × Y . For x ∈ X, consider

TX = {x} × Y ∪X × {b}.

Then, X × {b} is homeomorphic to X so it is connceted. Likewise, {x} × Y is
homeomorphic to Y so it is connceted. Since (x, b) ∈ X × {x} ∩ {x} × Y , so Tx
is conncted by the previous theorem. Note that⋃

x∈X
Tx = X × Y,

⋂
x∈X

Tx 6= ∅.

By the pervious theorem, it follows X × Y is connected.

Corollary 15.1. Rn is conncected ∀n ≥ 1.

In summary, here are some useful facts related to connectedness:

• R (and its subintervals) is connceted

• If A ⊆ X is connected, then Ā is connected.

• If Aα ⊆ X are connceted and
⋂
αAα 6= ∅ then

⋃
αAα is connected

• If X,Y are connected, then X × Y is connected

Corollary 15.2. If X1, . . . , Xn are connected, then X1×· · ·×Xn is connceted.

Proof. Use the previous bullet and induction.

Consider
Rω = R× R× · · · =

∏
Z+

R.

Theorem 15.5. Rω is not connected in the box topology.

Proof. Let
U = {x = (x1, x2, . . . ) | x is bounded}.

and
V = {x | x is unbounded}.

Then, we have
Rω = U ∪ V

U ∩ V = ∅
U 6= ∅
V 6= ∅

Let x = (x1, x2, . . . ) ∈ Rω. Then,

x ∈W = (x1 − 1, x1 + 1)× (x2 − 1, x2 + 1)× · · · × (xn − 1, xn + 1)× · · ·
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If x is bounded, then everything in W is bounded. Then,

x ∈ U =⇒ x ∈W ⊆ U

So U is open.
If x is unbounded, then everything in W is unbounded so

x ∈ V =⇒ x ∈W ⊆ V

and hence V is open. So U, V is a separation.

Theorem 15.6. Rω is connected in the product topology.

Proof. Define
R̃n = {(x1, x2, . . . , xn, 0, 0, . . . )} ⊆ Rω

Then, R̃n is homeomorphic to Rn so Rn is conncected.

(0, 0, 0, . . . ) ∈ R̃n ∀n

so
⋂
n∈Z+

R̃n 6= ∅. Then, R∞ =
⋃
n R̃n is connceted. Hence, R∞ ⊆ Rω is

connected.
Now, we claim that R∞ = Rω. Let x = (x1, x2, . . . ) ∈ Rω and U a basis

element for Rω with x ∈ U . We want to show that U ∩ Rω 6= ∅. we have

U = U1 × U2 × · · · × Un × R× R× · · ·

Notice y = (x1, x2, . . . , xn, 0, 0, . . . ) is in R̃n and hence y ∈ Rω. Then, x1 ∈
U1, . . . , xn ∈ Un, 0 ∈ R so y ∈ U . Therefore, U ∩ Rω 6= ∅.

Definition 15.3. Let X be a topological space and x0, x1 ∈ X. A path in X
from x0 to x1 is a continuous function

γ : [a, b]→ X

such that γ(a) = x0 and γ(b) = x1.

Example 15.6. γ(t) = tx1 + (1− t)x0 where t ∈ [0, 1].

Definition 15.4. X is path-connected if ∀x0, x1 ∈ X, there exists path in X
from x0 to x1.

Theorem 15.7. If X is path-connceted then X is connected.

The converse of the theorem is false.

Example 15.7. Consider

A = {(x, sin(1/x)) | x ∈ (0, 1/π)}.

Last time, we showed that Ā is connected. However, Ā is not path connected.
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Consider x0 = (0, 0) ∈ Ā and x1 = (1/π, 0) ∈ Ā. Suppose γ : [0, 1]→ Ā is a
path from x0 to x1. Then, we can write γ(t) = (x(t), y(t)). So

x : [0, 1]→ [0, 1/π]

y : [0, 1]→ [−1, 1]

are continuous. The set {t ∈ [0, 1] | x(t) = 0} is closed. Let b = sup{t ∈
[0, 1] | x(t) = 0}. Then, x(b) = 0 and x(t) > 0 for t ∈ (b, 1] with y(t) =
sin(1/x(t)). By reparameterizing, we may assume that b = 0. For each n, find
0 < u < x(1/n) so sin(1/u) = (−1)n. By the intermediate value theorem, there
exists 0 < tn < 1/n so x(tn) = u. Note that

y(tn) = sin

(
1

x(tn)

)
= sin

(
1

u

)
= (−1)n

Then,
lim
n→∞

y(tn) = lim
t→0

y(t) = y(0).

But limn→∞(−1)n does not exist.

16 Homeomorphism

Definition 16.1. A homeomorphism is a function f : X → Y that satisfies the
following conditions:

• continuous

• invertible (bijective)

• f−1 is also continuous

Example 16.1. Consider

f : [0, 2π)→ S1

θ 7→ (cos θ, sin θ)

Here, inverse breaks circle so f is continuous but f−1 is not continuous.

Definition 16.2. X,Y are homeomorphic if there exists homeomorphism from
X to Y . If this is true, we write X ∼= Y and say that X is homeomorphic to Y .

Theorem 16.1. Assume X ∼= Y . Then X is connected iff Y is connected.

Theorem 16.2 (Intermediate value theorem). Suppose f : X → R is contin-
uous. Assume X is connected. Let x, y ∈ X and r ∈ R such that r is between
f(x) and f(y). Then, there exists z ∈ X such that f(z) = r.
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Proof. Consider (−∞, r) and (r,∞). Those are open in R, nonempty, and
disjoint. Let U = f−1((−∞, r)) and V = f−1((−∞, r)). These are also open,
nonempty, and disjoint. But X is connected so U, V can’t be a separation.
So U ∪ V 6= X and hence ∃z ∈ X − (U ∪ V ). Then, f(z) /∈ (−∞, r) and
f(z) /∈ (r,∞). Therefore, f(z) = r.

Theorem 16.3. R is connected.

Proof. Suppose A ⊆ R is nonempty and bounded above. Then, there exists a
least upper bound M for A and any other upper bound M ′ satisfies M ≤ M ′.
We write Af or this LUB.

Suppose U, V is a separation of R. So there exists a ∈ U and b ∈ U . Then,
WLOG, we may assume a < b. Sets

U0 = U ∩ [a, b]

V0 = V ∩ [a, b]

form a separation of [a, b]. Notice U0 6= ∅ and x ∈ U0 satisfies x ≤ b. So
C = sup(U0) exists. Then, c ∈ U or C ∈ V . In fact, c ≥ a and c ≤ b so c ∈ U0

or c ∈ V0. Assume c ∈ V0. Since V0is open in [a, b] so there exists < c such that
(d, c] ⊆ V0. Note if x < g then x /∈ U0 because c is an upper bound of U0. This
implies that [c, b] ⊆ V0. Then,

(d, c] ∪ [c, b] ⊆ V0 =⇒ (d, b] ⊆ V0.

But then d is an upper bound for U0 so c ≤ d. This is a contradiction.
Now, suppose c ∈ U0. Then, Y0 is open in [a, b]. Then, there exists e > c

such that [c, e) ⊆ U0. Let f = (e+ c)/2. Then, c < f < e and f ∈ [c, e). Then,
f ∈ U0. Then, c ≥ f because it is an upper bound. This is a contradiction.

Example 16.2. (−π/2, π/2) is connected.

Proof. tan−1 : R→ (−π/2, π/2) is a homeomorphism.

Example 16.3. (0, 1) ∼= (a, b) if a < b.

Proof. f : (0, 1)→ (a, b) given by f(t) = (1− t)a+ b is a homeomorphism.

Corollary 16.1. (0, 1) is connected.

Corollary 16.2. (a, b) is connected for any a < b.

Recall that if A is connected then ∀A ⊆ B ⊆ Ā, B is connected. We apply
this with A = (a, b). Then, [a, b) or (a, b] or [a, b] are connected.

Corollary 16.3. Suppose I ⊆ R is a subspace. Then, I is connected if and
only if I = R or I is an interval or I is any of the follwowing:

(a,∞), (−∞, b), [a,∞), (−∞, b].

Example 16.4. Rn − {0} is path-connected for n ≥ 2.
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Proof. Let x, y ∈ Rn − {0}.

• (Case 1) The line l passing through x and y does not contain 0. Then,
γ : [0, 1]→ Rn−{0} given by γ(t) = (1− t)x+ ty has image in l and hence
in Rn − {0}. So this is a path from x to y.

• (Case 2) 0 ∈ l. Since n ≥ 2, Rn 6= R and Rn 6= l. So there exists
z ∈ (Rn − {0})− l. Define γ : [0, 1]→ Rn − {0} by concatenating a path
from x to z with one from z to y.

Example 16.5. Write down a formula for the path that goes from x to z and
from z to y.

Definition 16.3. For n ≥ 1, define the n-sphere:

Sn = {(x0, x1, . . . , xn) ∈ Rn+1 | x20 + x21 + · · ·+ x2n = 1}

Lemma 16.1. Sn is path connected.

Proof. Consider
f : Rn − {0} → Sn

x 7→ x

|x|
where

|x| =
√
x20 + · · ·+ x2n

f is continuous and Im(f) = Sn. Since Rn+1 − {0} is path-connected, so Sn is
path-connected.

17 Compactness

Definition 17.1. Let X be a topological space. A cover of X is a collection A
of subsets of X whose union equals X. The cover A is open if all elements in
A are open in X.

Definition 17.2. If A is a cover of X, a subcover is A′ ⊆ A that is a cover of
X. A′ is an open subcover if it is an open cover.

Example 17.1. A′ = {Bd(0, 2n)|n ∈ Z+} is an open subcover of X.

Definition 17.3. X is a compact if every open cover of X has a subcover that
is finite (consists of a finite number of elements of the cover).

Example 17.2. Rn is not compact.

48



Proof. Consider A = {Bd(0, n)|n ∈ Z+}. This is an open cover. Suppose A ⊆ A
is a subcover that is finite. Then,

A′ = {Bd(0, n1), Bd(0, n2), Bd(0, n3), . . . , Bd(0, nk)}

Let N = max{n1, n2, . . . , nk}. Then,

(N, 0, 0, . . . , 0) ∈ Rn

is not in Bd(0, n1), Bd(0, n2), . . . , Bd(0, nk). So A′ is not a cover.

Example 17.3. Prove that (0, 1] is not compact by considering

A =

{(
1

n
, 1

]
|n ∈ Z+

}
.

Example 17.4. X = {1} is compact.

Proof. Let A be any open cover. Then, ∃A ∈ A, so 1 ∈ A. Then, A′ = {A} is
a finite subcover.

Example 17.5. X = {0} ∪ {1/n|n ∈ Z+} is compact.

Proof. Let A be an open cover. Then, ∃A ∈ A such that 0 ∈ A. A is open in
the subspace topology so A = X ∩ U where U ⊆ R is open. Then, ∃N ∈ Z+ so
1/n ∈ U∀n > N . Hence, 1/n ∈ A∀n > N . ∀1 ≤ n ≤ N , ∃An ∈ A such that
1/n ∈ An. Then,

A′ = {A,A1, . . . , AN}

is a finite subcover.

Example 17.6. All closed intervals [a, b] ⊆ R where a, b ∈ R are compact.

Theorem 17.1. Suppose X is compact and Y ⊆ X is closed. Then, Y is
compact.

Proof. Let A be an open cover of Y . Then, B = A∪ {X − Y } is an open cover
of X. Since X is compact, there exists finite subcover B′ ⊆ B. If {X−Y } /∈ B′
then B′ is a finite subcover of A. If {X − Y } ∈ B′ then simply omit this to get

B′′ = B′ − {X − Y }

a finite subcover of A.

Theorem 17.2. Suppose X is Hausdorff and Y ⊆ X is compact. Then, Y is
closed in X.

Proof. It suffices to show that X − Y is open. Let x ∈ X − Y . We want to find
open U ⊆ X − Y so x ∈ U ⊆ X − Y . X is Hausdorff by assumption so ∀y ∈ Y ,
there exists Uy, Vy ⊆ X open so Uy ∩ Vy = ∅ and x ∈ Uy and y ∈ Vy. Then,

A = {Vy ∩ Y |y ∈ Y }
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is an open cover of Y . So since Y is compact, there exists finite usbcover

A′ = {Vy1 ∩ Y, . . . , VyN ∩ Y }.

Then,
UY1
∩ UY2

∩ · · · ∩ UYN
is open, contains X and so we are done.

Theorem 17.3. Suppose X is compact and f : X → Y is continuous. Then,

Im(f) = f(Y ) ⊆ Y

is compact.

Proof. Let A be an open cover of Im(f). Then, write

A = {Aα}α∈J

Since Aα is open in Im(f), we can write

Aα = Bα ∩ Im(f)

where Bα is open in Y . Then, f−1(Bα) ⊆ X is open in X so

{f−1(Bα)|α ∈ J}

is an open cover of X. Then,

{Aα1
, . . . , AαN }

is a finite subcover of Im(f).

Example 17.7. Show that compactness is a topological property. If X ∼= Y
then X is compact if and only if Y is compact.

Proof. Assume X ∼= Y , so there exists homeomorphism f : X → Y . Assume
X in compact. Then, Im(f) is compact. But then, Im(f) = Y . So Y is
comapct. Conversely, use the same argument with f−1 : Y → X which is a
homeomorphism.

Example 17.8. Suppose X is compact, Y is Hausdorff, and f : X → Y is
bijective and continuous. Then, f is a homeomorphism. (Hint: it suffices to
show that f(C) is closed for all closed C ⊆ X).

Proof. To show that the hint is valid, show that f−1 is continuous. Then,
(f−1)−1(C) = f(C). Suppose that the hint is true. Suppose C is closed. Then,
C is compact and f(C) is comapct. Furthermore, f(C) is closed.

Definition 17.4. Suppose A is a collection of open sets in X and Y ⊂ X is a
subspace. Then, A is a cover of Y if

Y ⊆
⋃
A∈A

A
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Lemma 17.1 (Tube lemma). Given

{x} × Y ⊆
N⋃
j=1

Ax,j

and Y compact, there exists Wx ⊆ X open so

{x} × Y ⊆Wx × Y ⊆
N⋃
j=1

Ax,j

Proof. Since each Ax,j is open, ∀y ∈ Y , there exists Uy×Vy ⊆ X ×Y such that

(x, y) ∈ Uy × Vy ⊆
⋃
Ax,j

Then, {Uy × Vy|y ∈ Y } is an open cover of {x} × Y , implying that there exists
a finite subcover, which we can write

{Uy1 × Vy1 , . . . , UyM × VyM }

Then, lte
Wx = Uy1 ∩ · · · ∩ UyM .

This satisfies the condition of the lemma.

Theorem 17.4. Suppose X and Y are compact. Then, X × Y is compact.

Proof. Let A be an open cover of X × Y . Fix x ∈ X. Then, {x} × Y ∼= Y so
{x} × Y is compact. A is a cover of {x} × Y . So there exists a finite subcover

{Ax,1, Ax,2, . . . , Ax,N} ⊆ A

Note that ∀x ∈ X, the tube lemma gives an open Wx ⊆ X with x ∈Wx. Then,

{Wx|x ∈ X}

is an open cover of X. Then, X compact implies that there exists finite subcover

{Wx1
, . . . ,Wx2

}.

Then,
{Ax1,1, Ax1,2, . . . , Ax1,N

Ax2,1, Ax2,2, . . . , Ax2,N

...

AxL,1, AxL,2, . . . , AxL,N}
is a finite subcover of x× Y .

Corollary 17.1. Suppose X1, . . . , Xn are compact. Then, X1 × · · · × Xn is
compact.
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Proof. We use the previous theorem and induction on n. When n = 1, the
statement is obviously true. If X1 is compact, then X1 is compact. Now,
assume the result is holds for n− 1. Let X1, . . . , Xn be compact. Then,

X1 × · · ·Xn−1

is compact. Then,

X1 ×Xn−1 ×Xn = (X1 × · · · ×Xn−1)×Xn

is compact by the theorem.

Example 17.9. Suppose {Xα}α∈J is a collection of compact sets. Is
∏
α∈J Xα

compact with the product topology? Depends on the axiom, this may not be
true. If we assume the axiom of choice, then, by Tychonoff, this is true. Axiom
of choice states that you can make an infinite number of arbitrary choices.

Example 17.10. Let X be compact and f : X → R be continuous. The f
achieves a maximum and a minimum. That is, there exists c, d ∈ X so that

f(c) ≤ f(x) ≤ f(d) ∀x ∈ X

Proof. Suppose there does not exist a maximum. In other words, for all d ∈ X,
there exists x ∈ X such that f(x) > f(d). Since X is compact, so f(x) is
compact. Consider

{(−∞, f(x)) |x ∈ X}

Since f has no max, this is an open cover of f(X) = Im(f). Then, there exists
a finite subcover:

{(−∞, f(x1)), . . . , (−∞, f(xN ))}.

Let f(x∗) be the maximum of

{f(x1), . . . , f(xN )}.

Then,

f(X) ⊆
N⋃
j=1

(−∞, f(xj)) = (−∞, f(x∗)).

So f(x∗) ∈ f(X) but f(x∗) /∈ (−∞, f(x∗)). This is a contradiction.

Theorem 17.5. ∀a, b ∈ R, the closed interval [a, b] is compact.

Proof. We amy assume a < b. Let A be an open cover of [a, b]. Consider

C = {c ∈ [a, b] | [a, c] can be covered by a finite subcollection of A}

We want to show that b ∈ C. To show this is true, we are going to show (1)
C 6= ∅, (2) C is open and (3) C is closed. These imply C = [a, b] because [a, b] is
connected.
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(Proof of claim 1) Since A covers [a, b], there exists A ∈ A so a ∈ A. Hence,
[a, a] is closed by {A} ⊆ A. So a ∈ C.

(Proof of claim 2) Let c ∈ C. Our goal is to find δ > 0 such that

c ∈ (c− δ, c+ δ) ∩ [a, b] ⊆ C.

Then, A ∈ A so c ∈ A. Since A is open in [a, b], there exists δ > 0 such that

(c− δ, c+ δ) ∩ [a, b] ⊆ A.

Let z ∈ (c − δ, c + δ) ∩ [a, b]. If z ≤ c, then [a, z] ⊆ [a, c] and so is covered by
whatever subcover that covers [a, c]. If z > c, then take the finite subcover for
[a, b] together with A to get z ∈ C.

(Proof of claim 3) Suppose {cn} ⊆ C and cn → c ∈ [a, b]. We want to show
that c ∈ C.

18 Special topics

18.1 Manifolds and surfaces

Definition 18.1. An m-manifold is a topological space M that satisfies:

1. M is Hausdorff.

2. M has a countable basis for its topology (if M is compact, this automati-
cally hold by 3).

3. ∀x ∈M, ∃ open set containing x that is homeomorphic to an open set in
Rm.

Definition 18.2. 1-manifold is called a curve.

Definition 18.3. 2-manifold is called a surface.

Example 18.1. Rm is an m-manifold.

Example 18.2. If U ⊆ Rm is open, then U is an m-manifold.

Example 18.3. An empty set is an m-manifold for any m.

Example 18.4. Sn is an n-manifold (n ∈ Z+ ∪ {0}). When n = 1, for any
x 6= (0, 1), we can construct a homeomorphism φ : S1 − {(0, 1)} → R, also
known as stereographic projection.

Example 18.5. Consider the set

{(x, y)|y = 0} ∪ {(x, y)|x = 0} ⊆ R2

is not a manifold. Consider (x, y) = (0, 0). Then, any open set around this
point cannot be homeomorphic to any open subset of Rn.
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Example 18.6. See Exercise 5 in Section 36 for an example of something
satisfying conditions 2 and 3 but not 1.

Remark. Being a manifold is a topological property. Suppose M is an m-
manifold and M∼= N . Then, N is an m-manifold.

Example 18.7. If M is an m-manifold and N is an n-manifold, then M ×N
is an m+ n-manifold.

Proof. Conditions 1 and 2 follow immediately from 1 and 2 for M and N . To
prove the third condition, let (x, y) ∈M×N . Then, there exists an open set U ⊆
M containing x and U ′ ⊆ N containing y. Then, consider homeomorphisms

φ : U → V ⊆ Rm

φ′ : U ′ → V ′ ⊆ Rn

Then,
φ× φ′ : U × U ′ → V × V ′ ⊆ Rm+n

(s, t) 7→ (φ(s), φ′(t))

is a homeomorphism (its inverse is φ−1 × (φ′)−1) and (x, y) ∈ U × U ′.

General goal is to classify all m-manifolds. Let’s try it with 1 manifolds.
First, we can try to write down some examples. S1 and R are manifolds. In
fact, any closed paths are 1-manifolds. In general, we would call this embedding
on R2. An open interval (a, b) and any open path is a 1-manifold. We can even
take some unions of manifolds.

Even if we focus on connected ones, we get a lot of manifolds. If we only
consider up to homeomorphism, it seems like we only have two. So we can try
to make a conjecture: IfM is a connected 1-manifold, thenM∼= R orM∼= S1.
So R and S1 are the only connected 1-manifolds up to homeomorphism. In fact,
this statement is true.

Example 18.8. What does it mean to ”classify” something (or a collection of
things)?

Example 18.9. Write down 3 compact, connected surfaces that are not mutu-
ally homeomorphic.

Example 18.10 (Daley’s conjecture). If X is a compact, connected surface,
then X is a homeomorphic to one of the following:

S2, T 2, T 2#T 2, T 2#T 2#T 2

Suppose S1 and S2 are surfaces. Fix points p1 ∈ S1 and p2 ∈ S2 and open
balls p1 ∈ B1 ⊆ S1 and p2 ∈ B2 ⊆ S2. Notice δB1 = S1 = δB2.

Definition 18.4. Define an equivalence relation on X by p ∼ q iff p = q or
p ∈ δδ(S1 −B1) and q ∈ δ(S2 −B2). These give the same point in S1.
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Definition 18.5. Let ∼ be an equivalence relation. Define

X/ ∼ = {equivalence classes of ∼ on X}
= {[p]|p ∈ X}

Definition 18.6. S1#S2 is the connected sum.

Consider surjection π : x → X/ ∼ given by p 7→ [p]. Say U ⊆ X/ ∼ is
open if and only if π−1(U) ⊆ X is continuous. Then, π is continuous and π is
a quotient map P as in section 22.

Theorem 18.1. If S1 and S2 are connected (respectively compact) then S1#S2

is connected (respectively compact).

The homeomorphism class of S1#S2 is independent if S1 and S2 are con-
nected.

Example 18.11. The surface in the previous examples are distinct up to home-
omorphism.

Definition 18.7. Let X be a topological space with x0, x1 ∈ X. Given I = [0, 1],
suppose

γ : I → X

γ′ : I → X

are paths from x0 to x1. Then, γ and γ′ are path-homotopic if there exists
continuous function

F : I × I → X

satisfying

• F (s, 0) = γ(s).

• F (s, 1) = γ′(s).

• F (0, t) = x0.

• F (1, t) = x1.

If such F exists, we write γ ∼=p γ
′

Proposition 18.1. Path homotopy is an equivalence relation in the space of
paths from x0 to x1.

Proof. First, we want to show that γ ∼= γ. Define F (s, t) = γ(s). Then, this is
a path homotopy.

Second, we want to show symmetry:

γ ∼=p γ
′ =⇒ γ′ ∼=p γ.

Let F : I × I → X be a path homotopy from γ to γ′. Let G : I × I → X be the
map such that G(s, t) = F (s, 1− t). Then,
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• G(s, 0) = F (s, 1) = γ′(s)

• G(s, 1) = F (s, 0) = γ(s)

• G(0, t) = F (0, 1− t) = x0

• G(1, t) = F (1, 1− t) = x1

Hence, γ′ ∼=p γ.
Finally, suppose γ ∼=p γ

′ and γ1 ∼=p γ
′′. Let F and G be path homotopies

from γ to γ′ and γ′ to γ′′ respectively. Define

H : I × U → X

by

H(s, t) =

{
F (s, 2t) 0 ≤ t ≤ 1

2

G(s, 2t− 1) 1
2 < t ≤ 1

Then, H is a path-homotopy from γ to γ′′.

Definition 18.8. A loop based at x0 ∈ X is a path in X from x0 to x0.

Definition 18.9. The fundamental group of X with base point x0 is

π1(X,x0) = {[γ]|γ is a loop in X based at x0}

where [γ] = {γ′|γ ∼=p γ
′} is the equivalence class at γ relative to ∼=p.

Example 18.12. Consider X = Rn with x0 = 0. Let γ, γ′ be any two loops.
Then, γ ∼=p γ

′. So π1(Rn, 0) has one element.

Proof. Define F : I × I → Rn such that

F (s, t) = (1− t)γ(s) + tγ′(s).

Definition 18.10. A group is a set G together with a function

G×G→ G

(g, h) 7→ gh

satisfying

• (Associativity) (g · h) · h = g · (h · f) for any g, h, f ∈ G

• (Identity) ∃e ∈ G such that g · e = e · g = g∀g ∈ G.

• (Inverse) If g ∈ G, there exists g−1 ∈ g such that g · g−1 = g−1 · g = g.

Example 18.13. Consider G = Z with operation addition. Then, this is a
group.
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Example 18.14. G = Z is not a group because it does not have an inverse.

Example 18.15. Consider G = Z×Z with (m,n) · (m′, n′) = (m+m′, n+n′).
This is a group.

Example 18.16. G = {0, 1} with addition under modulus 2 is a group.

Now, we define binary operation in fundamental group

π1(X,x0)× π1(X,x0)→ π1(X,x0)

as follows.

Definition 18.11. Suppose γ, γ′ are loops base at x0. Define

γ ∗ γ′(s) =

{
γ(2s) 0 ≤ s ≤ 1/2

γ′(2s) 1/2 < s ≤ 1

Proposition 18.2. If γ0 ∼=p γ1 and γ′0
∼=p γ

′
1, then γ0 ∗ γ1 ∼=p γ

′
0 ∗ γ′1.

Corollary 18.1. There is a well-defined map

π1(X,x0)× π1(X,x0)→ π1(X,x0)

[γ] ∗ [γ′] 7→ [γ ∗ γ′]

Example 18.17. Klein bottle is not homeomorphic to T 2 or any number of
connected sums of T 2.

Theorem 18.2. π1(X,x0) with ∗ is a group.

Proof. Define e : [0, 1] → X where e(t) = x0. Then, [e] ∈ π1(X,x0). Then, if
[f ] ∈ π1(X,x0), then

f ∗ e =

{
f(2s) 0 ≤ s ≤ 1/2

x0 1/2 ≤ s ≤ 1.

Then, f ∗ e ∼=p f . So [f ∗ e] = [f ].
Now, we want to find its inverse. Let [f ] ∈ π1(X,x0). Define

f̄ : [0, 1]→ X

where f̄(s) = f(1− s). Then, f ∗ f̄ ∼=p f̄ ∗ f ∼=p e. So [f ]−1 = [f̄ ].

Definition 18.12. If (G, ∗) and (H, ∗) are two groups, we say they are isomor-
phic if there exists bijection φ : G→ H so that

φ(a ∗ b) = φ(a) ∗ φ(b)

for all a, b ∈ G.

Theorem 18.3. If X ∼= Y , then π1(X,x0) is isomorphic to π1(Y, y0).
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Example 18.18. π1(S2) ∼= {1}. In other words, Every loop in S2 can be path
homotoped to the constant path.s21s

Example 18.19. π1(T 2) ∼= Z× Z.

Example 18.20. We can conclude that T 2 ∼= S2 since π1(S2) 6∼= π1(T 2).

Example 18.21. It turns out that if g 6= h and g, h ∈ Z+, then

π1(T 2# · · ·#T 2︸ ︷︷ ︸
g

) 6∼= π1(T 2# · · ·#T 2︸ ︷︷ ︸
h

)

because
T 2# · · ·#T 2︸ ︷︷ ︸

g

6∼= T 2# · · ·#T 2︸ ︷︷ ︸
h

.

Example 18.22 (Conjecture).

• If X is a compact, connected surfaces, then X is homeomorphic to one of
S2.T 2, T 2#T 2, . . .

• If X,Y are two distinct elements of 1 then X ∼= Y .
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