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1 Metric space theory

1.1 Introduction

Example 1.1.1. (R, | · |) is a metric space, where | · | denotes absolute value.

Example 1.1.2. (Rn,Euclidean norm) is a metric space.

Example 1.1.3. C[a, b] denotes space of continuous functions on [a, b] and is
an infinite dimensional metric space.

1.2 Metric spaces

In elementary analysis, we went over the notion of real numbers, sequences,
connvergence, continuity, integration and differentiation. An important tool
was the absolute value as it allowed us to measure distance between two points.

Definition 1.1 (Absolute value). The absolute value between x and y is written
as |x− y| and measures distance on number line.

Maurice Frechet noted that much of analysis may be extended to to abstract
sets M , provided there is a reasonable definition of distance between points. In
other words, much of elementary analysis depends not on specific properties of
R, but only on its metric properties and can be abstracted.

Recall that a sequence (Xn)n∈N converges to x in R if ∀ε > 0, there exists
N ∈ N such that |xn − x| < ε for all n ≥ N . In order to extend this notion, we
need to define distance. What is a reasonable way to define distance?

Definition 1.2 (Distance). A function d : M ×M → R is a metric on M if
the following holds:

(i) 0 ≥ d(x, y) <∞ ∀x, y ∈M .

(ii) d(x, y) = 0 iff x = y. If this condition does not hold, d is called a pseudo-
metric.

(iii) d(x, y) = d(y, x)∀x, y ∈M .

(iv) d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ M . This generalizes the triangle
inequality.

Remark. In R2, the smallest distance between two points is the line.

Definition 1.3. We say (M,d) define a Metric space.

Example 1.2.1. (M = R, d(x, y) = |x− y|) is a valid metric space.

Example 1.2.2. de(x, y) = |e−x − e−y| is a metric on R.
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Example 1.2.3 (Discrete metric).

ddisc(x, y) =

{
0 x = y

1 x 6= y

is a valid metric on any set M . In particular, note that any set M has at least
one metric.

Of course, changing the metric d changes the geometry of disks, our notion
of convergence, continuity, etc. For example, (R, d(x, y) = |x− y|) and (R, ddisc)
are very different as Metric spaces.

1.3 Normed vector spaces

There is a natural metric to choose in this case to keep the inherent structure
of the space.

Definition 1.4 (Norm). Let V be a vector space (over R or C). A norm on V
is a function ‖ · ‖ : V → R with the following properties:

(i) 0 ≤ ‖v‖ <∞ ∀v ∈ V .

(ii) ‖v‖ = 0 ⇐⇒ v = 0.

(iii) ‖αv‖ = |α|‖v‖ ∀α ∈ R, v ∈ V .

(iv) ‖v + w‖ ≤ ‖v‖+ ‖w‖.

Proposition 1.1. If V is a vector space with norm ‖ · ‖, then (V, d) is a metric
space with d(v, w) = ‖v − w‖. We call this metric the usual metric.

Note that
d(v, w) = ‖v − w‖‖v − u+ u− w‖

≤ ‖v − u‖+ ‖u− w‖
= d(v, u) + d(u,w)

Clearly, ‖x‖ = |x| define a norm on R so the usual metric is an example of this
proposition. However, de and ddisc, defined above, are valid metric which don’t
come from norms.

Example 1.3.1. d(x, y) = (x − y)2 is not a metric as it fails to satisfy the
triangle inequality. For example, consider x = 0 and y = 1. Then,

d(0, 1) > d(0, 1/2) + d(1/2, 1).

Example 1.3.2. d(x, y) = x2−y2 is not a metric because d(x, y) = 0 iff x = ±y.

Example 1.3.3. d(x, y) =
√
|x− y| is a metric. In particular, the triangle

inequality holds:√
|x− y| ≤

√
|x− z + z − y| ≤

√
|x− z|+ |z − y|
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Example 1.3.4. d(x, y) = |x−y|
1+|x−y| is a metric. LetF (t) = t/(1 + t). Then, we

can show that
F (a+ b) ≤ F (a) + F (b).

Example 1.3.5. Consider a Euclidean space Rn. Then, the usual metric is
given by

d(x, y) =

√√√√ N∑
j=1

|xj − yj |2.

Hence, we have the Euclidean norm:

‖x‖2 =

√√√√ N∑
j=1

|xj |2

We can write this using the inner product:

‖x‖2 = 〈x, x〉

To verify that this is indeed a norm, we need Cauchy-Schwartz inequality :

|〈x, y〉| ≤ ‖x‖2‖y‖2

To prove the inequality, let t ∈ R. Then, for all x, y ∈ RN , we have

0 ≤ ‖x+ ty‖22 = 〈x+ ty, x+ ty〉
= ‖x‖2 + t2‖y‖2 + 2t〈x, y〉 ∀t ∈ R

This is a quadratic in t so the discriminant must be non-positive. In other
words,

At2 +Bt+ C ≥ 0 ⇐⇒ B2 − 4AC ≤ 0.

Hence,
4(〈x, y〉)2 ≤ 4‖x‖2‖y‖2 =⇒ |〈x, y〉| ≤ ‖x‖‖y‖

Now, the trinagle inequality follows easily for ‖x‖ =
√
〈x, x〉:

‖x+ y‖2 = ‖x‖+ ‖y‖2 + 2〈x, y〉
≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖

= (‖x‖+ ‖y‖)2

Note that other norms are possible on Rn. For example,

d1(x, y) =

N∑
j=1

|xj − yj |
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is a metric where the associated norm is given by ‖x‖1 =
∑N
j=1 |xj |.

dp(x, y) =

(
N∑
i=1

|xj − yj |p
)1/p

is a metric where the associated norm is given by ‖x‖p =
(∑N

j=1 |xj |p
)1/p

.

Finally,
d∞(x, y) = ‖x− y‖∞

is a norm where ‖x‖∞ = sup
1≤j≤N

|xj |.

1.4 Neighborhood

Now that we have a distance designed on a space (M,d), we can study its
geometry.

Definition 1.5. The open ball Br(x) of radius r > 0 centered at x is

Br(x) = {y ∈M | d(x, y) < r}.

Definition 1.6. A set A ⊆ M is bounded if there exists a ball BR(x) with
A ⊆ BR(x).

Definition 1.7. A set U is a neighborhood of x if there exists r > 0 with
Br(x) ≤ U .

Example 1.4.1. In R equipped with the usual metric, Br(x) = (x− r, x+ r),
an open interval. In R2 and R3, Br(x) is the round disk and a spherical ball
centered at x.

Changing metric changes the shape of the ball.

Example 1.4.2. First, consider (R2, d∞). Then,

Br(~x) = {~y ∈ R2 | d∞(~x, ~y) < r}

Note that
d∞(~x, ~y) < r ⇐⇒ sup(|x1 − y1|, |x2 − y2|) < r

⇐⇒ |x1 − y1|, |x2 − y2| < r

Therefore, Br(~x) is a square.

Example 1.4.3. Consider a set M equipped with discrete topology. If r ≤ 1,

ddisc(x, y) < r ≤ 1 =⇒ y = x.

Hence, Br(x) = {x}. If r > 1,

ddisc < r =⇒ y ∈M.

Hence, Br(x) = M . Therefore, all sets are open and all sets are closed.
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Definition 1.8. Let (Xn)n∈N be a sequence in (M,d). We say Xm → X for
some x ∈ M if ∀ε > 0 there exists N ∈ N so that d(Xn, X) < ε for all n ∈ N .
Equivalently, Xn → X if ∀ε > 0 there exists N ∈ N such that Xn ∈ Bε(x) for
all n ≥ N . Or, for every neighborhood U of x there exists N ∈ N with Xn ∈ U
for all n ≥ N .

In general, the choice of the metric may affect convergence.

Example 1.4.4. Let M = R equipped with discrete topology. Suppose Xn →
X, choose ε = 1/2. Then, there exists N ∈ N such that d(Xn, X) < ε for all
n ≥ N . In other words, Xn = x for all n ≥ N . So {Xn} is convergent in ddisc

iff {Xn} is eventually constant. For example, Xn = 1/n does not converge.

Example 1.4.5. Let M = R2 and d = d∞. Take a ball B∞ε (x). Note that

B2√
2ε

(ε) ⊂ B∞ε (x) ⊂ B2√
2ε

(ε)

So convergence in sup norm is equivalent to convergence in Euclidean metric.
If Xn → X in (R2, d2) then Xn → X in (R2, d∞). Conversely, if Xn → X in

(R2, d∞) then Xn → X in (R2, d2). Hence, (R2, d∞) and (R2, d2) are equivalent
in the sense that they have the same convergent and divergent sequences.

Theorem 1.1. Let ‖ · ‖ be any norm in Rm. Then, (RN , ‖x− y‖) is equivalent
to the Euclidean metric on RN . More precisely, one can show that there exists
c1, c2 > 0 with

c1‖x‖2 ≤ ‖x‖ ≤ c2‖x‖2 ∀x ∈ RN .

1.5 Sequence spaces

Infinite dimensional spaces are more interesting. Let

W = {x = (x1, x2, x3, . . . )|xm ∈ R}.

W is a vector space on R. We can define family of norms on subspaces of W .

Definition 1.9. `p = {x ∈W |
∑∞
k=1 |xk|p∞} for 1 ≤ p <∞ with norm

‖x‖p =

( ∞∑
k=1

|xk|p
)1/p

Definition 1.10. `∞ = {x ∈W | supk |xk| <∞} with norm

‖x‖p = sup
k
‖xk‖.

Let’s review a series of non-negative terms. Sn =
∑n
k=1 ak where ak ≥ 0

forms a sequence (Sn)n∈N in R, since each ak ≥ 0,

Sn+1 = Sn + an+1 ≥ Sn
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Sequence is monotone increasing.
If Sn → S, we say Sn converges. If Sn → ∞, we say Sn diverges. If Sn is

bounded, it converges to
S = sup

n
Sn = limSn

Theorem 1.2. `∞ is a normed vector spaces.

Proof. • ‖x‖∞ ≥ 0; ‖x|∞ = 0 iff supk |xk| = 0

• ‖αx‖∞ = |α|‖x‖∞.

• Let x, y ∈ `∞. Then,

‖xj + yj‖ ≤ |xj |+ |yj |
≤ ‖x‖∞ + ‖y‖∞

Hence, ‖x‖∞ + ‖y‖∞ is an upper bound for ‖xj + yj‖. Therefore,

‖x+ y‖∞ ≤ ‖x‖∞ + ‖y‖∞

Theorem 1.3. `p is a normed vector spaces.

Proof. For 1 ≤ p <∞, call(
N∑
k=0

|xk|p
)1/p

= ‖x‖N,p,

the p-norm of the N -tuple. So the triangle inequality is given by

‖x+ y‖N,p ≤ ‖x‖N,p + ‖y‖N,p
≤ ‖x‖p + ‖y‖p

for all N ∈ N.
Now, the sequence (‖x+y‖N,p)N∈N is monotonically increasing and bounded

above so its limit exists.

‖x+ y‖p = lim
N→∞

‖x+ y‖N,p ≤ ‖x‖p + ‖y‖p

Example 1.5.1. Consider a sequence (Xn) such that further subsequence con-
verges to X. Show that the entire sequence Xn converges to X.

Instead, we can prove its contrapositive. Suppose Xn doesn’t converge to X,
i.e., there exists ε > 0 and k ∈ N and exists mk > k such that d(Xmk , X) > ε.
Then, any subsequence of {Xmk} converge to X.
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1.6 Spaces of continuous functions

Another important normed vector space is

C([a, b]) = {f : [a, b]→ R | f is continuous}

with sup norm:
‖f‖∞ = sup

x∈[a,b]
|f(x)|.

Since f is continuous on [a, b], the supremum is really a maximum. This defines
a norm.

Example 1.6.1. Another useful norm on C([a, b]) is the L1-norm:

‖f‖1 =

∫ b

a

|f(x)|dx.

Verify that this is a norm.

These define very different metric spaces. Convergence in ‖ · ‖∞ implies
uniform convergence. Note that convergence in ‖ · ‖∞ implies convergence in L1

but not other way around.

1.7 Open and closed

Definition 1.11. Let (M,d) be a metric space, U ⊆ M . We say x ∈ U is an
interior point of U if there exists ε > 0 such that Bε(x) ⊆ U .

Definition 1.12. We say that the set U is open if every x ∈ U is an interior
point.

Example 1.7.1. In any metric space, the vall Br(x) is always open.

Proof. Let y ∈ Br(x) and let s = d(y, x) < r. Let ε = r − s. We claim that
Bε(y) ⊆ Br(x).

Let z ∈ Bε(y). Then, d(y, z) < ε and

d(x, z) ≤ d(x, y) + d(y, z)

< s+ ε

= r

This implies that z ∈ Br(x) and therefore,

Bε(y) ⊆ Br(x).

Example 1.7.2. Which are the open sets on (M,ddisc)? Since B1/2(x) = {x},
for every set S ⊆ M , every point in x ∈ S is an interior point so all subset of
M are open.
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Theorem 1.4.

• Let {Uα}α∈I be an arbitrary collection of open sets. Then, U =
⋃
α∈I Uα

is open.

• If U1, . . . ,Un are each open, then so is their intersection.

Proof. First, let x ∈ U . Then, there exists α0 ∈ I such that x ∈ Uα0 where Uα0

is open. So there exists ε > 0 such that

Bε(x) ⊆ Uα0 ⊆ U

and x is an interior point of U . This is true for all x ∈ U and so U is open.
Second, let x ∈ U1 ∩ · · · ∩ Un. Then, x ∈ Uj for all j ∈ 1, . . . , n. Then, there

exists εj > 0 with Bεj (x) ⊆ Uj . Let ε = minj εj > 0. Then,

Bε(x) ⊆ Bεj (x) ⊆ Uj ∀j.

Example 1.7.3.
∞⋂
n=1

(
− 1

n
,

1

n

)
is not open in the standard topology in R.

Theorem 1.5. In R with the usual norm, if U is open, then U is the disjoint
union of countably many open intervals.

Proof. Let x ∈ U and define

ax = inf{a : (a, x] ⊂ U}
bx = inf{b : [x, b) ⊂ U}

Since U is open, there exists ε > 0 such that (x − ε, x + ε) ⊆ U such that
ax < x < bx. Also,

x ∈ Ix = (ax, bx) ⊆ U

and gives the longest interval containing x lying inside U (think about this; it
follows fom the definition of the interval).

We claim the following: for all y ∈ U , either Iy = Ix or Iy ∩ Ix = ∅. If
Iy ∩ Ix 6= ∅, then Ix ∪ Iy is open, contains x, contradicting the definition of
Ix = (ax, bx) and Ix = Iy.

Therefore, intervals {Ix} are disjoints. To see that there are only countably
many, choose a rational number qx ∈ Ix. The distinct intervals are disjoint
and so the qx are distinct but Q is countable. There is no such classification in
R.

Definition 1.13. A set F ⊆M is closed if its complement M \ F is open.
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Note that a set can be both open and closed or can be neither open nor
closed.

Example 1.7.4. (0, 1] is neither open nor closed in the standard topology.

Theorem 1.6. If {Fα |α ∈ I} is an arbitrary collection of closed sets,
⋂
α∈I Fα

is closed.

Theorem 1.7. If F1, F2, . . . , Fm are closed, their union is closed.

Definition 1.14. x is a limit point of a set A ⊆M if ∀ε > 0, there exists y ∈ A
with y 6= x and y ∈ Bε(x).

Lemma 1.1. Equivalently, x is a limit point of A iff there exists a sequence
{xn} in A with xn 6= x for all n ∈ N and xn → x.

Proof. Let ε = 1/n, then there exists xn ∈ A, xn 6= x such that xn ∈ B1/n(x).
In other words, d(xn, x) < 1/n for all n. This is equivalent to saying that
xn → x.

Now, assume that for all ε > 0, there exists N ∈ N such that d(xn, x) < ε
for all n > N and xn 6= x. Therefore, for all ε > 0 there exists y ∈ A with y 6= x
and y ∈ Bε(x).

In fact, the sequence xn may be chosen to be distinct.

Example 1.7.5. 0 is a limit point of A = {1/n}n∈N but 1/n is not a limit point
of A.

Example 1.7.6. Consider A = (−1, 1)∪{2}. Limit points are given by {−1, 1}.

Lemma 1.2. F is closed if and only if Bε(x) ∩ F 6= ∅ for all ε > 0 implies
x ∈ F .

Proof. F is closed iff M \ F is open. Let x ∈ M \ F . Then, there exists ε > 0
such that Bε(x) ∈M \ F . In other words, Bε(x) ∩ F = ∅. So if Bε(x) ∩ F 6= ∅
for all ε > 0. Then, x ∈ F .

Theorem 1.8. A is closed iff A contains all its limit points.

Proof. Suppose A is closed and x ∈ M \ A, which is open. Then, there exists
ε > 0 such that

Bε(x) ⊆M \A ⇐⇒ Bε(x) ∩A = ∅

Then, x is not a limit point of A. So all limit points of A are inside A.
Suppose A contains all its limit points and consider x ∈ A. Then, x is not a

limit point. Then, there exists ε > 0 such that Bε ∩A = ∅ and

Bε(x) ⊆M \A.

Therefore, x is an interior point of M \A. This is true for all x ∈M \A and so
M \A is open, implying that A is closed.
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Corollary 1.1. A is closed iff whenever xn → x with (xn)n∈N ⊆ A, then x ∈ A.

Corollary 1.2. A is closed iff

Bε(x) ∩A 6= ∅∀ε > 0 =⇒ x ∈ A.

Definition 1.15. For every set A ⊆M ,

(i) the interior of A, A◦ or int(A) is the largest open set contained in A:

int(A) =
⋃
{Uopen ⊆ A} .

(ii) The closure of A, Ā is the smallest closed set which contains A:

Ā =
⋂
{F closed |A ⊆ F}

Proposition 1.2. A◦ is a set of all interior points of A.

Proof. Note that A◦ is a subset of all interior points of A. If x ∈ A◦, then as
A◦ is open, there exists ε > 0 such that

Bε(x) ⊂ A◦ ⊆ A.

Now, we want to show that other direction. Since if x is an interior point
then there exists ε > 0 such that Bε ⊂ A and this is an open set. Since A◦ is
the largest open set, A ⊆ A◦.

Proposition 1.3. x ∈ Ā iff Bε(x) ∩A 6= ∅ for all ε > 0.

Proof. Suppose Bε(x)∩A 6= ∅ for all ε > 0. Hence, Bε(x)∩Ā 6= ∅ since A ⊆ Ā.
But Ā is closed so x ∈ Ā.

If x ∈ Ā and let ε > 0 be given. Assume that Bε(x) ∩ A = ∅. Then,
A ⊆ (Bε(x))c. Because definition of Ā, we have

Ā ⊆ (Bε(x))
c
.

This is a contradiction because x /∈ (Bε(x))
c
.

Theorem 1.9. Let A′ be the set of all limit points of A. Then,

Ā = A ∪A′.

Proof. Recall that x ∈ Ā iff Bε(x) ∩ A 6= ∅ for all ε > 0. Let x ∈ Ā. If x ∈ A,
there is nothing to prove. If x /∈ A, we want to show that x ∈ A′.

We have Bε(x) ∩ A 6= for all ε > 0. In other words, there exists y 6= x such
that y ∈ A and y ∈ Bε(x). This means that x is a limit point by definition.

Example 1.7.7. Consider A = (−1, 1) ∪ {2}. Then, Ā = [−1, 1] ∪ {2}.

Corollary 1.3. x ∈ Ā iff there exists a sequence (xn)n∈N with xn → x.
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Example 1.7.8. Consider `2, ‖ · ‖2. Let A = {x ∈ `2 : |x32| ≤ 1}.
We can easily show that the set A is not open. For example,

(0, 0, 0, . . . , 0, 1, 0, 0, . . . ).

is not an interior point. For all ε > 0, let

y = (0, 0, 0, . . . , 0, 1 + ε/2, 0, . . . ) ∈ `2.

Then,

‖x− y‖`2 =
ε

2
< ε,

i.e., y ∈ Bε(x) but y /∈ A. Moreover, we have

A◦ = {x ∈ `2 : |x32| < 1}

and the proof for this is left as an exercise.
The set A is closed. Let x(n) be any sequence in A which converges x(n) → x.

We must show that x ∈ A. Note that

|x32 − x(n)32 | ≤ ‖x− x
(n)
32 ‖`2

because √∑
|xj − x(n)j |2 = ‖x− x(n)‖`2 .

So
|x32 − x(n)32 | → 0

as n→∞. But x(n) ∈ A so |x(n)32 | ≤ 1 for all n. Hence, |x32| ≤ 1 also x ∈ A. So
x is closed.

Example 1.7.9. Consider

B = {x ∈ `2 : |xj | ≤ 1∀j}

=

∞⋂
j=1

{x ∈ `2 : |xj | ≤ 1}

This is an intersection of closed sets so B is closed.

Example 1.7.10. Prove that

B◦ = {x ∈ `2 : |xj | < 1 ∀j}.

Example 1.7.11. Consider a set of truncated sequence

C = {x ∈ `2 : ∃k ∈ N with xj = 0∀j ≥ k}

Is this set open? For x ∈ C let

y = (y1, y2, . . . )
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with yj = xj + ε2

2j . So yj = ε2/2j for j ≥ k and y /∈ C. But

‖y − x‖2 =

√√√√ ∞∑
j=1

(
ε4

4j

)
≤ ε

2
< ε

so y ∈ Bε(x) for all ε > 0 with y /∈ C. So x is not an interior point. And so
int(C) = ∅.

Is this set closed? Let y ∈ `2. Let

y(n) = (y1, y2, . . . , yn, . . . ) ∈ C ∀n.

By practice problem 40 from page 48,

y(n) → y

in `2-norm. Hence, y ∈ C̄ and C̄ = `2 and so C̄ 6= C. So C is not closed.
However, we say that the set C is dense in `2.

Example 1.7.12. We are given (`∞, ‖ · ‖∞). Let

D = {x ∈ `∞ : ∃k ∈ N, xj = 0∀j ≥ k}.

By practice problem 40 from page 48, D is not dense in `∞, and so its closure
is a subset of `∞ but different from `∞.

We claim that

D̄ = c0 = {x ∈ `∞ : xj → 0 as j →∞}.

Suppose x(n) ∈ D and x(n) → x in `∞-norm. Then, for all ε > 0, there exists
N ∈ N such that

|x(n)j − xj ≤ ‖x(n) − x‖∞ < ε,

for all n ≥ N . Since x(n) ∈ D, there exists k such that x
(n)
j = 0 for all j ≥ k,

i.e.,

|xj | = |xj − x(N)
j | < ε.

This impliesi that xj → 0 in `∞-norm and D̄ ⊆ c0.
Conversely, if x ∈ c0, let

x(n) = (x1, x2, . . . , xn, 0, 0, 0, . . . ) ∈ D.

Then,

‖x− x(n)‖∞ = sup
j≥1
|xj − x(n)j |

= sup
j≥n+1

|xj |.

Since x ∈ c0, for all ε > 0, there exists N such that for all j ≥ N , |xj | < ε.
Thus, for all n ≥ N ,

‖x− x(n)‖∞ < ε,

i.e., x(n) → x in `∞-norm.
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Example 1.7.13. Consider a space of continuous functions N = C([0, 1])
equipped with a sup-norm. Then,

B2(f) = {g ∈ C([0, 1]) : ‖g − f‖∞ < ε}
= {g ∈ C([0, 1]) : f(x)− ε < g(x) < f(x) + ε∀x ∈ [0, 1].}

Example 1.7.14. Consider a space of continuous functions N = C([0, 1])
equipped with a sup-norm. Then,

B2(f) = {g ∈ C([0, 1]) : ‖g − f‖∞ < ε}
= {g ∈ C([0, 1]) : f(x)− ε < g(x) < f(x) + ε∀x ∈ [0, 1].}

Then, consider

A = {f ∈ N : 0 < f(x) < 1,∀x ∈ [0, 1]} .

This set is open. Let f ∈ A. Since [0, 1] is closed and bounded, f attains its
maximum and minimum. Let

m1 = min
[0,1]

f(x) = f(a) > 0

M2 = max
[0,1]

f(x) = f(b) < 1

This implies that 0 < m1 ≤ f(x) ≤M2 < 1 for all x ∈ [0, 1].
Let ε < min{m1, 1−M2}.Then, if g ∈ Bε(f), we have

0 < m1 − ε ≤ f(x)− ε < g(x) < f(x) + ε ≤M2 + ε < 1.

Thus, g ∈ A. So Bε(f) ⊆ A and f is an interior point. Then, for all f ∈ A, f is
an interior point and A is open.

On the other hand,

Ā = {f ∈ C([0, 1]) : 0 ≤ f(x) ≤ 1} .

Note that if fn ∈ A, fn → f then 0 ≤ f(x) ≤ 1. To verify, if 0 ≤ f(x) ≤ 1, let
fn(x) ∈ A such that

fn(x) =


1− 1

n if f(x) > 1− 1
n

f(x) if 1
n ≤ f(x) ≤ 1− 1

n
1
n if f(x) ≤ 1

n

Then, fn ∈ A for all n. In particular,

‖f − fn‖ =
1

n
→ 0,

i.e.,
fn → f ∈ (C([0, 1]), ‖ · ‖∞).

So f ∈ A′, i.e., Ā ⊆ A′. So Ā is indeed the clousre of A.
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Example 1.7.15. Consider

B = {f ∈ C[0, 1] : 0 ≤ f(x) ≤ x}

the set. This set is closed. What about its interior?

Definition 1.16. Let A ⊆ M in a metric space (M,d). We say that x is a
boundary point of A,

x ∈ ∂A = bound(A)

if every neighborhood of x intersects with both A and Ac. In other words, for
all ε > 0, there exists z ∈ A and y ∈ Ac with y, z ∈ Bε(x).

Remark. ∂A = Ā ∩ Āc = Ā \A◦.

Example 1.7.16. For the above example, we have

∂A = {f ∈ C[0, 1] : ∃x ∈ [0, 1] such that f(x) = 0 or f(x) = 1}

Let

fε(x) =


1− ε

4 f(x) > 1− ε
4

f(x) ε
4 ≤ f(x) ≤ 1− ε

4
ε
4 f(x) < ε

4

Then, ‖f − fε‖∞ = ε/4 < ε, i.e., fε ∈ A with fε ∈ Bε(f). Furthermore,

Bε(f) ∩Ac 6= ∅, Bε(f) ∩A 6= ∅

1.8 Continuity

Definition 1.17. Suppose (M,d) and (N, ρ) are both metric spaces and f :
M → N is a function. We say f is continuous at x ∈M if for all ε > 0, there
exists δ > 0 such that for all y ∈M iwth d(x, y) < δ, we have ρ(f(x), f(y)) < ε.
If f is continuous at every point x ∈M , we say f is continuous in M .

Theorem 1.10. The following are equivalent for any f : (M,d)→ (N, ρ):

1. f is continuous on M

2. if xn → x in (M,d) then f(xn)→ f(x) is (N, ρ)

3. whenever E ⊆ N is closed, f−1(E) is closed in M

4. whenever V ⊆ N is open, f−1(V ) is open.

Proof. (1 =⇒ 2) For all ε > 0, let δ > 0 be such that ρ(f(x), f(y)) < ε for all
x, y ∈ M with d(x, y) < δ. Then, let N0 ∈ N with d(x, xn) < δ for all n ≥ N .
So for all n ≥ N0, ρ(f(x), f(xn)) < ε.

(2 =⇒ 3) Suppose E ⊆ N is closed and (xn)n∈N ⊂ f−1(E) and xn →
x ∈ M (to show that x ∈ f−1(E)). By (2), f(xn) → f(x). Since E is closed,
f(x) ∈ E, i.e., x ∈ f−1(E).
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(3 =⇒ 4) Let
f−1(Ac) = {x ∈M | f(x) ∈ Ac}

= {x ∈M | f(x) ∈ A}c

=
(
f−1(A)

)c
If V ⊆ N is open, V c is closed so f−1(V c) is closed, implying that

f−1(V ) =
(
f−1(V )

)c
is open.

(4 =⇒ 1) Let ε > 0 and Bε(f(x)) ⊆ N . Then, f−1(V ) is open in N ,
containing x, implying that there exists δ > 0 such that Bδ(x) ⊆ f−1(V ).
Then, for all y ∈ Bδ(x),

f(y) ∈ Bε(f(x)),

i.e., d(y, x) < δ, implying that ρ(f(x), f(y)) < ε.

Example 1.8.1. Let M be any set with d be discrete metric. Let N be any
set and ρ be any metric. Consider a function f : M → N . Then, for V ⊆ N

f−1(V ) = {x ∈M | f(x) ∈ V }

is open in M . So any function f is continuous.

Remark. If U ⊆M is open,

f(U) = {y ∈ N : y = f(x), x ∈ U}

may not be open.

Example 1.8.2. Consider f : R→ R, where f(x) = 5.

Remark. If V is closed, f(V ) may not be closed.

Example 1.8.3. Consider f : R → R with f(x) = e−x for V = [0,∞). Then,
f(V ) = (0, 1].

Remark. Suppose f(x) = x on A = [−1, 1], i.e.,

f : [−1, 1]→ R.

Then, f is continuous on A but

f−1 = {x ∈ A = [−1, 1] : f(x) ∈ (0, 2)}
= (0, 1].

Note that (0, 1] is open relative to A (subset topology).
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Definition 1.18. Let A ⊂ M be a metric space. We say that U ⊆ A is open
relative to A if there exists an open set V ⊂M with

U = A ∩ V.

Similarly, W ⊆ A is closed relative to A if there exists a closed set Z ⊂M with
W = Z ∩A. The theore on continuity holds in subsets of M , using the concept
of relative topology.

Theorem 1.11. Let f : A ⊆ M → N . f is continuous on A if and only if for
all open set S ⊆ N , f−1(S) is open relative to A, if and only if for all closed
set T ⊆ N , f−1(T ) is closed relative to A.

Example 1.8.4. Consider a function f : `2 → R where f(x) = x32.
we claim that f is continuous. Again, use |x32| ≤ ‖x‖2. So if x, y ∈ `2,

ρ(f(x), f(y)) = |f(x)− f(y)| = |x32 − y32| ≤ ‖x− y‖32 = d(x, y).

So for all ε > 0, let δ = ε. Then, d(x, y) < δ implies that ρ(f(x), f(y)) < ε.
Note that f is Lipschitz continuous.
Consider

A = {x ∈ `2 : |x|32 ≤ 1}
= {x ∈ `2 : −1 ≤ f(x) ≤ 1}
= f−1([−1, 1])

Since [−1, 1] is closed and f is continuousm f−1([−1, 1]) = A is closed.

Example 1.8.5. Suppose f is continuous with f(0) > 0. Then does there exist
a such that f(x) > 0 for all x ∈ (−a, a)?

Let ε = f(a)/2 and consider θ = (f(0)− ε, f(0) + ε). Since f is continuous,
f−1(θ) is open and contains 0. Therefore, there exists Ba(0) ⊂ f−1(θ) such that
f(x) ∈ θ, meaning that

f(x) ≥ f(0)

2
> 0.

1.9 Homeomorphism and Isometry

If f, g : (M,d) → R are continuous, so are cf , f + g, fg. So C(M,R), set
of continuous functions, is an algebra, a vector space but also closed under
multiplication. We’d like to define a norm on C(M,R), such as the sup-norm.
But is sup |f(x)| <∞?

We destinguish two special kinds of facts for such function:

f : (M,d)→ (N, ρ).

Definition 1.19. f is a homeomorphism if f is continuous, one-to-one, con-
tinuous and f−1 is continuous.
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If f is a homeomorphism, the metric space (N, ρ) is essentually the same
as (M,d) for some open sets, consequently, homeomorphism is equivalent to
topological equivalent.

Definition 1.20. f is an isometry if ρ(f(x), f(y)) = d(x, y), i.e., distances are
preserved. The geometry of M and f(M) are the same.

1.10 Completeness

Definition 1.21. We say (Xn)n∈N is a Cauchy sequence in (M,d) if for all
ε > 0, there exists N ∈ N with

d(xn, xm) < ε∀m,n ≥ N.

Remark. In R a sequence is convergent if and only if it is Cauchy.

This property was the completeness of R. In any metric space, convergence
implies Cauchy: since xm → x,

d(xn, xm) ≤ d(xn, x) + d(x, xm) <
ε

2
+
ε

2

for all n,m > N .

Definition 1.22 (Completeness). We call (M,d) complete if every Cauchy se-
quence is convergent.

Example 1.10.1. Rk is complete. If xm = (x1m, x
2
m, . . . , x

k
m) is a Cauchy

sequence in (R,usual Euclidean). But |xin − xim| ≤ ‖xn − xm‖ < ε for all
n,m ≥ N . Hence, each coordinate sequences (xin)n∈N, i = 1, . . . , k is Cauchy.
So xin → xi for some xi ∈ R. So candidate for the limit (xn)n∈N is (x1, . . . , xk) ∈
Rk. It is easy to show that

‖xn − x‖ → 0.

Example 1.10.2. (M,discrete) is complete. Cauchy sequences are eventually
convergent.

Example 1.10.3. Consider M = C([−1, 1]) with

d(f, g) =

∫ 1

−1
|f(x)− g(x)|dx.

For example, take

fn(x) =


1 x ≥ 1/n

linear −1/n ≤ x ≤ 1/n

−1 x ≤ −1/n

Then,

d(fn, fm) =

∣∣∣∣ 1

m
− 1

n

∣∣∣∣
is Cauchy. The limit is discontinuous. So this is not convergent because con-
vergence requires the limit to be in the set. So this space is incomplete.
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Example 1.10.4. `1, `2, c0 and `∞ are complete. Let’s do

`2 = {x :

∞∑
j=1

|xj |2 <∞}

Take a sequence Xn = (Xn(1), Xn(2), . . . ), which is Cauchy in `2. For all ε > 0,
there exists N ∈ N such that ‖Xn −Xm‖2 < ε/2 for all m,n ≥ N . First, note
that

|Xn(k)−Xm(k)| =
√
|Xn(k)−Xm(k)|2

≤ ‖Xn −Xm‖2

<
ε

2
.

So for fixed k ∈ N, (Xn(k))n∈N is Cauchy in R. So there exists

X(k) = lim
n→∞

Xn(k)∀k ∈ N

Our candidate ofr the limit is

X = (X(1), X(2), . . . ).

To show, we have to show that Xn → X in `2.
Verify that X ∈ `2, for fixed k ∈ N:

K∑
k=1

(x(k))2 = lim
n→∞

K∑
k=1

(Xn(k))2 ≤ ‖Xn‖2

Since (Xn) is Cauchy, it is bounded (from 3A03). Then,

K∑
k=1

(x(k))2 ≤M

for any K ∈ N. Take K →∞ then

‖x‖2`2 ≤M <∞ =⇒ x ∈ `2
Next, verify that Xn → X in `2-norm. For all K fixed,

K∑
k=1

|X(k)−Xn(k)|2 = lim
n→∞

K∑
k=1

|Xm(k)−Xn(k)|2

≤ lim
m→∞

‖Xm −Xn‖2`2 <
ε2

4

for all n ≥ N and all k ∈ N. Let K →∞,

‖X −Xm‖2`2 <
ε2

4

for all n ≥ N . So the convergence has been proved.

Theorem 1.12. If (M,d) is a complete metric space and A ⊆ M is closed,
then (A, d) is itself a complete metric space.

Corollary 1.4. c0 is a complete metric space.
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1.11 Compactness

Theorem 1.13 (Bolzano-Weierstrass Theorem). In R with usual metric, any
bounded sequence contains a convergent subsequence.

Example 1.11.1. Consider M = `∞. Let

xn = (0, 0, . . . , 1, 0, . . . )

Then, d(xn, xm) = 2 for all n 6= m. So there rae no Cauchy subsequences.

Example 1.11.2. Consider Rn with Euclidean metric. If Xk ∈ Rn, then Xk =
(X1

k , . . . , X
n
k ) is bounded by M and

|Xj
k| ≤ ‖Xk‖ ≤M

for all k ∈ N and for all j = 1, 2, . . . , n. So (Xj
k)k∈N is bounded in R for all j.

Then, thre exists a subsequence k1,m with

X1
k1,m → x1.

and there exists a subsequence k2,m of k1,m such that

x2k2,m → x2

and
x1k2,m → x1.

We continue. Then, there exists a subsequence kn,m with the desired property:

Xj
kn,m

→ Xj

for all j. So
Xkn,m → x

in Euclidean.

We will restrict to special subset of (M,d) to get this.

Definition 1.23. K ⊆ M is called sequentially compact if every sequence in
K contains a subsequence which converges to a point in K. If this holds for
K = M , we call M a sequentially compact metric space.

So we’ve just shown that a closed, bounded subset of Rn is sequentially
compact. If K is closed and bounded in R, let (xk)k∈N be any sequence in
K, then (xk)k∈N bounded implies that there exists a convergent subsequence
xkm → x where x ∈M . If K is closed, then x ∈ K.

Theorem 1.14 (Heine-Borel theorem). In Rn, a set is sequentially compact iff
it is closed and bounded.
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Proposition 1.4. In any metric space, if K is sequentially compact, then K is
closed and bounded.

Proof. First, if (xn)n∈N is convergent, xn → x with xn ∈ K for all n, K is
sequentially compact implies that there is a subsequence that converges to x∗ ∈
K. Then, the whole sequence converges to x = x∗. This holds for any convergent
sequences so K is closed.

Suppose K is unbounded. Let x1 ∈ K. Then, there exists x2 ∈ K such that
d(x1, x2) ≥ 1. Also, there exists x2 ∈ K such htat d(x1, x3) ≥ 1 + d(x1, x2).
Then,

d(x2, x3) ≥ d(x1, d3)− d(x1, x2) ≥ 1.

Then, there exists x4 ∈ K such that d(x1, x4) ≥ d(x1, x3) + 1. Then,

d(x2, x4) ≥ d(x1, x4)− d(x1, x2)

≥ d(x1, x3) + 1− d(x1, x2)

≥ 1 + d(x1, x2) + 1− d(x1, x2)

= 2

implying that d(x3, x4) ≥ 1. We can continue this and get a sequence such that
d(xn, xm) ≥ 1 for all n 6= m , i.e., with no Cauchy subsequence and hence no
convergent subsequence. This is a contradiction and K must be bounded.

Definition 1.24. An open cover of a set A ⊆ M is a collection {Uα}α∈I of
open sets Uα with

A ⊆
⋃
α∈I

Uα

Example 1.11.3. If A is open, {U = A} is an open cover.

Example 1.11.4. Taking I = A, {Uα = Bε(α)}α∈A is an open cover for any
ε > 0.

Definition 1.25. We say K ⊆M is compact if every open cover of K contains
a finite subcover, i.e., if K ⊆

⋃
Uα, then there exists α1, α2, . . . , αN with

K ⊆ Uα1
∪ · · · ∪ UαN

Note that the subcover is a finite colllection from the original collection.

Example 1.11.5. Consider M = R equipped with the usual metric. Consider
A = (0, 1]. Let

Uα =

(
α− 1

10
, α+

1

10

)
,

where α ∈ (0, 1], is an open cover. Then, U1/10,U2/10, . . . ,U1 is a finite subcover.
However, A is not compact. Consider Vα = (α/2, 2). Then, this doesn’t

have a finite subcoer. Let
(Vα1

, . . . , VαN )
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be any finite subcover. Then,

inf (Vα1 ∪ · · · ∪ VαN ) =
α1

2
> 0.

Then, (0, α1/2] is not conatined within the collection so (0, 1] is not compact.

Theorem 1.15. In any (M,d), K is compact iff K is sequentially compact.

Proof. First, assume that K is (covering) compact. (Lemma 1) if F ⊆ K is
closed, K is closed then F is compact. Let {Uα}α∈I be any open cover of F .
Then, {Uα}α∈I ∪ {F c} is an open cover of K. Then, K is compact implies that

Uα1 ∪ · · · ∪ Uαn ∪ F c

covers K and
Uα1
∪ · · · ∪ Uαn

covers K.
Now assume (Xn) is a sequence in K with no convergent subsequences. Let

F = {Xn : n ∈ N}. Then, F has infinitely many elements and no limit points.
So F is closed and F is compact.

Since F has no limit point, for all yn ∈ F , there exists εn > 0 such tht
Bεn(yn) contains F other than yn itself. {Bεm(ym)} is an open cover that has
finite subcover. This is a contradiction.

Definition 1.26. We say a set A is totally bounded if ∀ε > 0, there exists finite
colection X1, . . . , Xn ∈ A with

A ⊆ Bε(x1) ∪ · · · ∪Bε(xN )

This is like compactness but for the special class of open cover by balls of fixed
radius.

Remark. We proved that if A is totally bounded then any sequence must have
a convergent subsequence. If A is closed, then A is sequentially compact.

Proposition 1.5. Assume K is sequentially compact. Then, K is totally
bounded.

Proof. Suppose no. Then, there exists ε > 0 for which a finite collection of balls
can not cover K. Take y1 ∈ K then Bε(y1) does not cover K. In other words,
there exists y2 ∈ K \ Bε(y1). So d(y2, y1) ≥ ε. Now, {Bε(y1), Bε(y2)} does not
cover K. So we can define a ball around y3 again.

Continued, we get a sequence (yn)n∈N ⊂ K, where

d(yn, ym) ≥ ε

with no convergent subsequences.

We are ready to show that K sequentially compact implies K covering com-
pact. Assume K is sequentially compact and {Uα} is an open cover.
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Lemma 1.3. There exists r > 0 such that for all y ∈ K, there exists α ∈ I
with Br(y) ⊆ Uα.

Proof. If not, then for all r = 1/n, there exists yn ∈ K such that Byn(yn)
is not contained in any Uα. K sequentially compact implies that there exists
subsequence ymj → y0 ∈ K but {Uα}α∈I covers K so there exists α0 with
y0 ∈ Uα0 . Choose ε > 0 with Bε(y0) ⊆ Uα0 but ymj → y0. So there exists τ ∈ N
such that ymj ∈ Bε/2(y0) for all j ≥ τ . As d(ym, y) < ε/2 and as for j large
enough, 1/n < ε/2. Therefore,

B1/mj (ymj ) ⊆ Bε(y0) ⊆ Uα0

This is a contradiction.

To complete the proof of the theorem, let r > 0 be as in the above lemma
and apply the proposition: there exists y1, . . . , yN ∈ K such that

K ⊆ Br(y1) ∪ · · · ∪Br(yN )

By the above lemma, ∀j = 1, . . . , N , there exists αj such that

Br(y) ⊆ Uαj =⇒ K ⊆ Uα1
∪ · · · ∪ UαN

So we have shown that

1. If K is compact then K is sequentially compact

2. If K is sequentially compact then K is totally bounded

3. If K is sequentially compact and totally bounded then K is compact

Example 1.11.6. Show that

{x ∈ `2 | |x(k)| ≤ 1/k}

is compact.

Theorem 1.16. If f : M → N is continuous and K ⊆ M is compact, then
f(K) is compact in N .

Proof. Let {Uα} be an open cover of f(K),

f(K) ⊆
⋃
α∈I
Uα,

i.e., for all x ∈ K, there exists αx ∈ i such that f(x) ∈ Uαx iff

x ∈ f−1(Uαx)

for some αx ∈ I. Then,

K ⊆
⋃
α∈I

f−1(Uα)
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is an open cover of K. So K is compact implies that there exists a finite subcover
of K. So

K ⊆ f−1(Uα1
) ∪ · · · ∪ f−1(UαN )

So for all x ∈ K, x ∈ f−1(Uαj ) for some j iff f(x) ∈ Uαj iff

f(K) ⊆ Uα1 ∪ · · · ∪ UαN ,

a finite subcover.

Corollary 1.5. If f is continuous and K is compact, then f(K) is bounded.
In particular, if f : K ⊆ M → R is continuous, there exists R > 0 such that
|f(x)| ≤ R for all x ∈ K.

Theorem 1.17. Suppose f : M → R is continuous, K ⊆M comapct. Then, f
attains its maximum and minimum value on K, i.e., there exists x∗ and x∗ in
K such that f(x∗) = inf f(x) and f(x∗) = sup f(x)

Proof. Let S = sup f(x) < ∞ by corollary. By definition of supremum, there
exists a sequence xn ∈ K, f(xn) → S. Since K ois compact, there exists a
subseeunce and x∗ ∈ K such taht xnk → x∗. Since f is continuous, f(xnk) →
f(x∗) = S.

Recall the definition of uniform continuity.

Definition 1.27. f is uniformly continuous on S ⊆ M if ∀ε > 0, there exists
δ > 0s uch that for all x, y ∈ S, d(x, y) < δ implies ρ(f(x), f(y)) < ε

Theorem 1.18. Let K ⊆ M be compact. Then, if f is continuous on K, f is
uniformly continuos on K

Example 1.11.7. Consider

K = {x ∈ `2 | |x(k)| ≤ 1/k}

This set is compact. Show that this set is sequentially compact and show that
is closed and totally bounded.

Note that for x ∈ K,

‖x‖2`2 ≤
∞∑
k=1

1

k2
<∞.

For all ε > 0 there exists N such that

∞∑
N+1

1

k2
< ε.

Let gN : RN → `2. This is continuous. Note that

AN = {x ∈ RN : |xn| ≤
1

n
, n = 1, . . . , N}
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is compact. Then, gN (An) = kN is compact. For x ∈ K, denote

x(N) = (x(1), x(2), . . . , x(N), 0, 0, . . . )

so that x(N) ∈ kN ⊆ `2 is compact. Then, there exists x1, . . . , xm ∈ KN such
that

kN ⊆
m⋃
j=1

Bε/2(xj).

Then, d(x, x(N)) < ε/2. So

K ⊆
m⋃
j=1

Bε(xj)

and K is totally bounded.
On the other hand, we can use a diagonal argument.

Theorem 1.19. Let K ⊆ M be compact. Then, if f is continuous on K then
f is uniformly continuous on K

Proof. Recall the definition of uniform continuity: for all ε > 0, there exists
δ > 0 so that ∀x, y, inS such that d(x, y) < δ implies ρ(f(x), f(y)) < ε. For any
ε > 0 and ∀x ∈ K, there exists δ(x) > 0 so that if y ∈ K, d(x, y) < δ(x) then
ρ(f(x), f(y)) < ε/2. Consider Ux = B δ(x)

2
(x), where x ∈ K. Then {Ux}x∈K is

an open cover of K. Because K is compact, there exists a finite subcover

K ⊆ Ux1
∪ · · · ∪ UxN .

Let δ = 1
2 (δ(x1), . . . , δ(xN )) > 0 as there are finitely many terms. Let x, y ∈ K

such that d(x, y) ∈ δ. Since x ∈ K, we have

x ∈ Ux = B δ(x)
2

(xj)

for some j ∈ {1, 2, . . . , N}. Since d(x, y) < δ < 1
2δ(xj), then y ∈ Bδ(xj)(xj).

Since
d(y, xj) ≤ d(y, x) + d(x, xj)

≤ δ +
δ(xj)

2

≤ δ(xj)

2
+
δ(xj)

2
= δ(xj).

Therefore,

ρ(f(x), f(y)) ≤ ρ(f(x), f(xj)) + ρ(f(xj), f(y)) ≤ ε.
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2 Space of continuous functions

2.1 Sets of functions

The simplest set of function is C(X, y), the class of continuous functions f :
(X, d)→ (Y, ρ). First, we recall some important notion of convergence.

Definition 2.1. Let fn : X → Y be any sequence of functions and f : X → Y .
We say that fn → f pointwise on X if fn(x)→ f(x) for each fixed x ∈ X, i.e.,
for all x ∈ X, for all ε > 0 there exists N ∈ N with ρ(f(x), fn(x)) < ε for all
n ≥ N .

Example 2.1.1. Consider fn : R→ R defined as

fn(x) =


−1 x ≤ − 1

n

nx − 1
n < x < 1

n

1 x ≥ 1
n .

Then,

fn(x)→ f(x) =


−1 x < 0

0 x = 0

1 x > 0.

Note that fn are continuous but the limit is not.

We see that pointwise limit doesn’t give a good notion of convergence. The
proper convergence in uniform convergence, derived from supremum norm.

Definition 2.2. fn → f uniformly on X if ∀ε > 0 there exists N ∈ N such that
ρ(fn(x), f(x)) < ε for all n ≥ N and ∀x ∈ X.

Theorem 2.1. If (fn)n∈N ⊆ C(M,N) and fn → f uniformly on M then
f ∈ C(M,N).

Proof. Let ε > 0. Choose m ∈ N such that ρ(fm(x), f(x)) < ε/3 for all x ∈ M
(by uniform convergence). Since fn is continuous, for all x ∈ M , there exists
δ(x) > 0 such that if y ∈M then d(x, y) < δ implies ρ(fm(x), fm(y)) < ε/3. By
the triangle inequality,

ρ(f(x), f(y)) ≤ ρ(f(x), fm(x)) + ρ(fm(x), fm(y)) + ρ(fm(y), f(y))

<
ε

3
+
ε

3
+
ε

3
= ε

So pointwise does not preserve continuity but uniform convergence does. So
the notion of uniform convergence is a good metric for (M,N).
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Now, let’s get back to (C([−1, 1]), ‖ · ‖∞). We claim that this is complete.
To show this, take a Cauchy sequence and show that in converges in general in
our space.

Consider ‖fm − fn‖∞ < ε for all n,m > N ∈ N. Then,

supx∈[−1,1]‖fm − fn‖∞ < ε.

So for all x ∈ [−1, 1], |fm − fn| < ε. Given a fixed x0 ∈ [−1, 1], |fm(x0) −
fn(x0)| < ε is Cauchy, i.e., {fn(x0)}n∈N is Cauchy. Since R is complete,

fn(x0)→ f(x0)

for some f(x0) ∈ R. Hence, our sequence fn(x0)→ f(x0) converges pointise.
We now need to show that f(x) is continuous and that fn → f in ‖ · ‖∞.

Since ∀x ∈ [−1, 1], we have

|fn(x)− fm(x)| = lim
m→∞

|fn(x)− fm(x)|

By our definition then, |fn(x)−f(x)| < ε for all x and for all n ≥ N , since {fn}
is Cauchy. So

sup
x∈[−1,1]

|fn(x)− f(x)| < ε,

for all n ≥ N . So fn → f in sup-norm.
Since fn → f in sup-norm, it’s uniform. By our previous theorem, f is

continuous.

Remark. We can generalize to see that (C([a, b]), ‖ · ‖∞) is complete.

The question is whether we can generalize function so that we can have
C(M,N)¿

We have fn → f uniformly if and only if for all ε > 0 there exists N ∈ N
such that

sup ρ(fn, f) < ε

for all n ≥ N . So this could define a distance on C(M,N) but we have to be
careful.

Example 2.1.2. Consider f, g : R→ R where f(x) = x and g(x) = 0. Then,

ρ(f(x), g(x)) = |x| =∞.

So we don’t have finite distance.

Hence, we need to just have our functions to be (1) bounded or (2) our space
has to be compact.

First, consider (M,d) to be a compact space. Then, f :→ (N, ρ) is bounded if
f is continuous, For example, for N = R, we may define ‖f‖∞ = sup |f(x)| <∞
when M is compact.

Second, we can restrict to Cb(M,N).
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Theorem 2.2.

• The space of bounded continuous functions is complete with ‖·‖∞ provided
that N is complete.

• C(M,N) is complete under the sup-norm provided that M is compact and
N is complete.

Example 2.1.3. Consider

fn(x) =
nx

1 + n2x2

Note that fn(x) is maximized when x = 1/n and we have fn(x) = 1/2. So

fn(x) =
n

n2
x

(x2 + 1/n2)

and converges pointwise to 0. So fn → 0.
If fn converges to a pointwise limit, does it also converge uniformly? Note

that uniform convergence implies pointwise convergence (prove this) but not
necessarily otherwise.

If we take (0, 1], then fn → 0 So consider [δ, 1] for δ > 0. Note that

fN (δ) =
Nδ

1 +N2δ2
=

1

N

δ

δ + 1/N2

So choose N such that fn(δ) < ε for all n ≥ N . Since fN (δ) is max, we have
uniform convergence on [δ, 1].

Example 2.1.4. Consider

fn(x) =
nx

1 + nx
.

We can rewrite it as

fn(x) =
n

n

(
x

x+ 1/n

)
and so fn → 0 for x = 0 but fn → 1 for any other x. Since our limit is not
continuous, we don’t have uniform convergence on [0, 1]. However, we do have
uniform convergence on [δ, 1] for all δ > 0.

We need to show that ‖fn − 1‖∞ < ε for all n ≥ N . Since fn is increasing,
difference is biggest at δ. So pick N so that |fN (δ)−1| < ε and we have uniform
convergence for all x ∈ [δ, 1].

We have two important consequences of uniform convergence.

Theorem 2.3. Suppose fn are continuous on [a, b] ⊆ R and fn → f uniformly.
Then,

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

f(x)dx.
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Proof. ∣∣∣∣∣
∫ b

a

fn(x)dx−
∫ b

a

f(x)dx

∣∣∣∣∣ ≤ |b− a| sup |fn − f |

< |b− a|
(

ε

|b− a|

)
Therefore, ∣∣∣∣∣

∫ b

a

fn(x)dx−
∫ b

a

f(x)dx

∣∣∣∣∣ < ε.

Example 2.1.5. Pointwise limit is not enough for the above. Consider a func-
tion that looks like a triangle which takes a value of 2n at x = 2−n and there
are straight lines from this point to x = 0 and x = 2−(n−1). Then,∫ 1

0

fn(x)dx =
1

2
2n2n−1 = 1

for all n. But the pointwise limit is f(x) = 0 and
∫

0 6= 1. So we don’t have
uniform convergence and have a problem.

2.2 Integration and differentiation

We need to review Riemann integral:

• If f : [a, b]→ R is continuous, f is Rieman integrable also if f is piecewise
continuous and bounded

• If f, g are Riemann integrable, f ≤ g, then for all x ∈ [a, b] then
∫ b
a
fdx ≤∫ b

a
gdx. In particular, if they are bounded, ie., |f | ≤M then we have

|
∫
f(x)dx| ≤

∫
|f(x)|dx ≤M(b− a)

• If f is continuous on [a, b] then for c ∈ [a, b],

F (x) =

∫ x

c

f(t)dt

is C1([a, b]) and F ′(x) = f(x) with F (c) = 0. This is also referred to a
the fundamental theorem of calculus.

• Integral of a sum is the sum of integrals

• We can split up integrals

Example 2.2.1. Here are some useful limits that can be proven using L’Hopital:

30



• n1/n → 1

• t1/n → 1 for all t > 0

• (1 + t/n)n → et for all t

• np/(1 + t)n → 0 for all p ∈ R

Example 2.2.2. Show that
∫ 1−1/n
0

fn →
∫ 1

0
f if fn → f uniformly on [0, 1].

Proof. Observe that∣∣∣∣∣
∫ 1− 1

n

0

fn(x)dx−
∫ 1

0

f(x)dx

∣∣∣∣∣ =

∣∣∣∣∣
∫ 1− 1

n

0

(fn(x)− f(x))−
∫ 1

1− 1
n

f(x)dx

∣∣∣∣∣
Note that ∫ 1− 1

n

0

fn(x)dx =

∫ 1

0

fn(x)ψ[0, 1− 1/n](x)dx

where

ψA(x) =

{
1 x ∈ A
0 x /∈ A

Then,∣∣∣∣∣
∫ 1− 1

n

0

(fn(x)− f(x))−
∫ 1

1− 1
n

f(x)dx

∣∣∣∣∣ ≤
∫ 1− 1

n

0

|fn(x)− f(x)|dx+

∫ 1

1− 1
n

|f(x)|dx

<
ε

2
+ ‖f‖∞

(
1− 1

n

)
< ε

for large enough n.

Note that uniform convergence isn’t enough to interchange limits of integra-
tion if the domin is unbounded. For example, consider a function which is 0 ev-
erywhere but has a straight line from (n, 0) to (2n, 1/n) to (3n, 0). Then, fn → 0
uniformly. Indeed for all ε > 0 we can choose N so that ‖fN‖∞ = 1/N < ε by
construction. However, ∫ ∞

0

fn(x)dx = 1

So

lim
n→∞

∫
fndx 6=

∫
lim
n→∞

fndx.

So our theorem from before depend on our interval being compact. What
about differentiation? Is it enough to have uniform convergence?
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Example 2.2.3. Consider

fn(x) =
1√
n

sin(nx)→ 0.

Then,
f ′n(x) =

√
n cos(nx)

does not even converge pointwise. So we need more.

Theorem 2.4. Suppose fn ∈ C1([a, b]) such that ∃g : [a, b] → R with f ′n → g
uniformly on [a, b] and there exists x0 ∈ [a, b] and y0 ∈ R such that fn(x0)→ y0
such that fn(x0) → y0. Then, there exists f ∈ C1[a, b] such that fn → f
uniformly and f ′ = g.

Proof. By fundamental theorem of calculus,

fn(x) = fn(xd) +

∫ x

x0

f ′n(t)dt.

For any fixed x ∈ [a, b), we may define

lim
n→∞

fn(x) = y0 +

∫ x

1/n

g(t)dt = f(x)

By F.T.C., f ′(x) = g(x) is continuous since f ′n is continuous and f ′n → g
uniformly. So f ∈ C1([a, b]).

Note that y0 = f(x0). It remains to show that fn → f uniformly. Note that

|f(x)− fn(x)| =
∣∣∣∣y0 − fn(x0) +

∫ x

x0

(g(t)− f ′n(t))dt

∣∣∣∣
≤ |y0 − fn(x0)|+

∫ x

x0

|g(t)− f ′n(t)|dt

So for all ε > 0, there exists N such that ∀n ≥ N , both

|fn(x0)− y0| <
ε

2

and
h(t)− f ′n(t) <

ε

2(b− a)

for all t ∈ [a, b]. Therefore, for all n ≥ N ,

|fn(x)− f(x)| < ε

2
+

∫ b

a

ε

2(b− a)
dt = ε.

In other words, ‖fn − f‖∞ → 0.
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2.3 Weierstrass approximation theorem

For images in vector spaces N , we may define uniform convergence of series.

Definition 2.3 (Uniform convergence of series). f(x) =
∑∞
n=1 fn(x) converges

uniformly on M if the partial sums, Sn(x) =
∑n
k=1 fk(x) converges uniformly

on M .

Theorem 2.5 (Weierstrass M-test). Suppose (fn)n∈N in (C(M,N), sup) are
bounded functions, fn : M → N and N is complete normed vector space. Let
Mn = ‖fn‖∞. If

∑∞
n=1Mn <∞, then

∑
n fn converges uniformly on M .

Proof. Define the partial sum Sn(x) =
∑n
k=1 fk(x). Then,

‖Sn − Sm‖∞ = ‖
n∑

k=m+1

fk‖ ≤
n∑

k=m+1

‖fk‖∞.

And since
∑n
k=m+1 ‖fk‖∞ <∞, we have for all ε > 0, there exists N ∈ N with

‖Sn − Sm‖∞ ≤
n∑

k=m+1

‖fk‖∞ < ε

for all n,m ≥ N . So (Sn)n∈N is cauchy in sup-norm. Since N is complete,
Sn =

∑n
k=1 fk is convergent in sup-norm.

Corollary 2.1. If each fn is continuous M compact or if each fn ∈ Cb(M,N),
N complete, then if

∑
‖fn‖∞ <∞ then f =

∑
fn is continuous.

Corollary 2.2. If each fn is Riemann integrable on [a, b] then f is Riemann
integrable and ∫ b

a

fdx =

∞∑
k=1

∫ b

a

fk(x)dx.

Corollary 2.3. If each fn ∈ C1[a, b] and
∑∞

1 f ′n converges uniformly on [a, b]
and

∑∞
1 fn(x) is convergent, then f ′(x) =

∑∞
1 f ′(x) and f ∈ C1[a, b].

Application of Weierstrass M -test is a function which is everywhere contin-
uous and nowhere differentiable. Start with g : R → R where g(x) = |x| for
−1 ≤ x ≤ 1 and g(x) = g(x − 2) otherwise. Then, g is continuous on R and
2-periodic. Also |g(x)− g(y)| ≤ |x− y|. Define

f(x) =

∞∑
k=0

(
3

4

)k
g(4kx)

Since ‖gk(x)‖∞ ≤ (3/4)k over R and
∑∞
k=0(3/4)k converges, so by Weierstrass

M -test, the series converges uniformly on R. Therefore, f is continuous on R.
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Take any x ∈ R. Let n ∈ N and choose δn = ± 1
24−m with sign chosen so

that there are no integers between 4nx and 4n(x + δn) = 4n ± 1/2. With this
choice of δn, we will look at

lim
n→∞

f(x+ δn)− f(x)

δn
.

If it convergnes, it will tend to f ′(x).
Observe that

∣∣g(4k(x+ δn))− g(4kx)
∣∣ =


0 if k ≥ n
1
2 if k = n

≤ |4kδn| if k < n by g lipsitchiz

Next,

f(x+ δn)− f(x)

δn
=

n∑
k=0

(
3

4

)k (
g(4k(x+ δn))− g(4kx)

δn

)

= ±
(

3

4

)m 1
2

± 1
24−n︸ ︷︷ ︸

3n

+

n−1∑
k=0

(
3

4

)k (
g(4k(x+ δn))− g(4kx)

δn

)

where ∣∣∣∣∣
n−1∑
k=0

(
3

4

)k (
g(4k(x+ δn))− g(4kx)

δn

)∣∣∣∣∣
≤
n−1∑
k=0

3k

4k
|4kδn|
|δn|

=

n−1∑
k=0

3k

≤ 3n

2
.

So
f(x+ δn)− f(x)

δn
≥ 3n − 3n

2
=

3n

2
→∞.

So f ′(x) does not exist, i.e., f is not differentiable at any x ∈ R.

Theorem 2.6 (The Weierstrass approximation theorem). For any continuous
function f : [a, b]→ R, there exists a sequence pn(x) of polynomials with pn → f
unifomrly on [a, b]. In other words, the class of all polynomials is a dense set
in C([a, b]) with sup-norm. We say that (C[a, b], ‖ · ‖∞) is separable since there
is a countable dense subset.

Corollary 2.4. C∞([a, b]) is dense in C[a, b].
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In the text, a proof is given involving a special family of polynomials, the
Berstein polynomials:

Bn(f) =

n∑
k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k,

where n ∈ N. The proof we will use is based on the idea of an approximatioin
to the identity. We introduce a special sequence of polynomials:

Qn(t) = Cn(1− t2)n, t ∈ [−1, 1]

where Cn = 1/
(∫ 1

−1(1− t2)ndt
)

so that

∫ 1

−1
Qn(t)dt = 1.

To estimate the magnitutde of Cn, we compute∫ 1

−1
(1− t2)ndt = 2

∫ 1

0

(1− t2)ndt

≥ 2

∫ 1/
√
n

0

(1− t2)ndt

≥ 2

(
1− 1

n

)n
1√
n

Or use binomials and use the fact that: (1 − t2)n ≥ 1 − nt2. Then, Cn < c
√
n

for some c > e/2. So
0 ≤ Qn(t) ≤ c

√
n(1− t2)n.

If 1 ≥ |t| ≥ δ > 0, then

0 ≤ Qn(t) ≤ c
√
n(1− δ2)n

So Qn(t)→ 0 uniformly in {t ∈ [−1, 1] : |t| ≥} Since∫ 2

−1
Qn(t) = 1,

this means that Qn(0)→∞. We call any family of
Inutitively, Qn → δ0, the Dirac delta. It concentrates all the area under the

graph in a neighbordhoof of t = 0 as n→∞.
We now reduce the problem a little. First, we may assume that [a, b] = [0, 1].

If not, consider g(x) = f(x − a)/(b − a), which is continuous on [0, 1]. Next,
assume f(0) = 0 = f(1). If not, let

g(x) = f(x)− f(0)− x(f(1)− f(0)).
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If ‖pn − g‖∞ < ε, then

‖pn + f(0) + x(f(1)− f(0))− f(x)‖∞ < ε

and pn + f(0) + x(f(1)− f(0)) is also a polynomial. The advantage is that we
can extend f : R → R by letting f(x) ≡ 0 if x < 0 and x > 1 and f is still
continuous on R.

Recall the definition of uniform continuity: for all ε > 0, there exists δ > 0
such that for all x, y with |x− y| < δ we have |f(x)− f(y)| < ε.

Lemma 2.1. f is uniformly continuous on R.

Proof. We proved any continuous function on a closed bounded interval is uni-
formly continuous. The constant f(x) ≡ 0 is uniformly continuous on [0, 1]c so
f is uniformly continuous on R since if |x − y| < δ ≥ 1, then x, y ∈ [−1, 2] or
obth x, y ∈ R \ [0, 1] and f is uniformly continuous on [−1, 2].

Define on [0, 1],

Pn(x) =

∫ 1

−1
f(x+ t)Qn(t)dt.

By a change of variable, s = t+x and f(s) = 0 if s /∈ [0, 1], i.e., −x ≤ t ≤ 1−x,
so we have

Pn(x) =

∫ 1−x

−x
f(x+ t)Qn(t)dt

=

∫ 1

0

f(s)Qn(s− x)dx

Note Pn(x) is a polynomial.

Qn(s− x) = cn(1− (s− x)2)n

= q2n(s)x2n + q2n−1(s)x2n−1 + · · ·+ q0(s)

is a polynomial in x with coefficients. Therefore,

Pn(x) =

[∫ 1

0

f(s)q2n(s)ds

]
x2n + · · ·+

[∫ 1

0

f(s)q0(s)ds

]
We must show that pn(x)→ f(x) uniformly on [0, 1]. We will need

• For all ε > 0, there exists δ > 0 such that ∀x ∈ [0, 1], with |x−y| < δ =⇒
|f(x)− f(y)| < ε/2

• Also, f is bounded so there exists M > 0 such that |f(x)| ≤M∀x ∈ [0, 1].

• Qn → 0 uniformly on Aδ = [−1, 1] \ [−δ, δ], i.e., there exists N ∈ N with
|Qn(t)| < ε/(8M) for all n ≥ N and for all t ∈ Aδ.

36



Then,

|f(x)− Pn(x)| =
∣∣∣∣f(x)

∫ 1

−1
Qn(t)dt−

∫ 1

−1
f(x+ t)Qn(t)dt

∣∣∣∣
=

∣∣∣∣∫ 1

−1
(f(x)− f(x+ t))Qn(t)dt

∣∣∣∣
Now, we divide the integral into 2 pieces:∣∣∣∣∣

∫ δ

−δ
(f(x)− f(x+ t))Qn(t)dt

∣∣∣∣∣
and we use uniform continuity.

Since x+ t = y, |x− y| = |x− (x+ t)| = |t| < δ. So the integral is less than

ε

2

∫ δ

−δ
Qn(t)dt ≤ ε

2

∫ 1

−1
Qn(t)dt =

ε

2

Also, ∣∣∣∣∫
Aδ

(f(x)− f(x+ t))Qn(t)dt

∣∣∣∣ ≤ 2M
ε

8M

∫
Aδ

1dt ≤ ε

2
.

Therefore, |f(x)−Pn(x)| < ε for all x ∈ [0, 1] for all n ≥ N . So Pn(x) uniformly
converges on [0, 1].

Example 2.3.1. Consider f, g with same moment then f = g, i.e.,∫ b

a

xnf(x) =

∫ b

a

xng(x)

for all n.

Example 2.3.2. If f ∈ C([a, b]) and
∫ b
a
xnf(x)dx = 0 for all n ∈ N then

f(x) ≡ 0.

Proof. There exists pn such that pn → f (Weirstrass). Hypothesis:
∫ b
a
pnfdx =

0 for every polynomial. Since pn → f , we have
∫ b
a
f2dx = 0 and since f2 ≥ 0,

we have f ≡ 0.

On the proof of Weirstrass, here’s what we have actually proven:

1. If we have a family Qn(x) that is integrable function with the property
that

• Qn(s) ≥ 0 for all s ∈ R
•
∫
Qn(s)ds = 1

• ∀δ > 0, let Aδ = R \ (−δ, δ), then

lim
n→∞

∫
Aδ

An(s)ds = 0
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Note that we chose Qn to be polynomial but it doensn’t have to be.

2. Suppose f is uniformly bounded on S ⊆ R and uniformly continuous on
S, varnishing outside of S. Then,∫

R
f(s)Qn(s− x)dx→ f

uniformly as n→∞.

Example 2.3.3. Consider

Gt(y) =
1√
4πt

e−y
2/(4t)

where t > 0. This is analogous to Qn with n = 1/t. As t→ 0+, Gt →∞. Then,

• Gt ≥ 0 because this is exponential

•
∫
Gtds = 1 because G is normal distribution function

• Away from the origin for our integral goes to 0

So

u(x, t) =

∫
Gt(x− s)f(x)ds→ f(x)

for all f uniformly continuos, uniformly bounded on R. But,

d

dt
Gt(x) =

d2

dx2
Gt(x)

holds for all t > 0 and for all x ∈ R. So u(x, y) solves the heat equation with
initla conditions given by f(x).

Example 2.3.4. Consider

Py(s) =
1

π
· 1

s2 + y2

Now, n = 1/y. As y → 0+, n → ∞. Checking conditions is left to the readers
as an exercise. Then,

u(x, y) =

∫
R
Py(s− x)f(s)ds→ f(x)

for f uniformly bounded, uniformly continuous. Hence,

d2

dx2
Py(x) +

d2

dy
Py(x) = 0

for y > 0 so u(x, y) solves the Laplacian and is a Harmonic extension of f to
the upper half plane.
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Suppose f(x, y) is continuous on [a, b]× [c, d] = R and f(x, ·) is differentiable
on [c, d] and fy is continuous on R. Then,

Fy =

∫ b

a

f(x, y)dx

is C1 and obtained by

F ′y =

∫ b

a

fy(x, y)dx.

We will study

F (y + h)− F (y)

h
=

∫ b

a

f(x, y + h)− f(x, y)

h
dx

We need uniform convergence of f(x,y+h)−f(x,y)h for fy(x, y). By MUT, consider
fy(x, φ) for y < φ < y + h. Then, fy(x, φ) is uniformly continuous in φ, i.e., for
all ε > 0, there exists δ > 0 such that

|fy(x, z)− fy(x, y)| < ε

if |x− y| < δ. So
|fy(x, φ)− fy(x, y)| < ε

uniformly. So we have uniform convergence of fy(x, φ) to fy(x, y).

2.4 Equicontinuity

In any metric space, compactness implies closed and bounded. However, this is
not always the case in general.

Example 2.4.1. Consider C([a, b]) and fn(x) = sin(nx) where n ∈ N. Then,
‖fn‖∞ = 1 so a bounded sequence but it does not have a uniformly convergent
subsequence.

Definition 2.4. Let A ⊆ M where M is a metric space with metric d. Then,
a subset F ⊂ C(A) is called equicontinuous if for all ε > 0, there exists δ > 0
such that |f(x)− f(y)| < ε for all x, y ∈ A with d(x, y) < δ for all f ∈ F .

So an equicontinuous family is one with uniformly continuous functions f
and δ that works for every f given ε > 0., i.e., all functions are uniform over
the domain.

Example 2.4.2. Consider

F2 = {f ∈ C(A)||f(x)− f(y)| ≤ Ld(x, y)∀x, y ∈ A}

All f ∈ F2 are Lipschitz with same constant L. If we had f , differentiable and
uniformly bound in A ⊆ R, then f ∈ F2 for A ⊆ R by Mean Value Theorem.
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Theorem 2.7. Let K ⊆ (M,d) be compact and F ⊆ C(K) be a bounded and
equicontinuous set. Then, only sequence {fn} ∈ F contains a uniformly con-
vergent subsequence.

Proof. Since F is equicontinuous, for all ε > 0, there exists δ > 0 such that
|f(x)− f(y)| < ε/3 for all x, y ∈ K so that d(x, y) < δ and ∀f ∈ F .

Consider the open covering {Bδ(x)|x ∈ K}. Since K is compact, there exists
a finite subcover:

K ⊆
N⋃
i=1

Bδ(xi)

for a finite collection x1, . . . , xN ∈ K.
Take a sequence {fn} of functions in F . By hypothesis, they are bounded.

So there exists B > 0 such that |fn| ≤ B for all n and for all x.
Look at only x1, . . . , xN . Then, |fn(xj)|n∈N is a bounded sequence in R, or

{(fn(x1), . . . , fn(xN ))}

is a bounded sequence in RN . By Bolzano Weierstrass, there exists subsequence
so that nk for which a sequence of vectors converges, i.e.,

fnk(xj)→ yj

in R for all j = 1, . . . , N . So fnk(xj) is Cauchy. So there exists K0 ∈ N so that

|fnk(xi)− fnl(xj)| <
ε

3

for all K, l ≥ K0 for all j = 1, . . . , N .
Take any x ∈ K. Since K is compact, there exists j so that x ∈ Bδ(xj) and

since f is equicontinuous,

|fnk(x)− fnk(xj)| <
ε

3

for all k ∈ N. Then,

|fnk(x)− fnl(x)| ≤ |fnk(x)− fnk(xj)|+ |fnk(xj)− fnk(xj)|+ |fnl(xj)− fnl(x)|

<
ε

3
+
ε

3
+
ε

3
= ε

So {fnk} is a Cauchy sequence in C(K). Since C(K) is complete, fnk converges
unifromly to f for some f .

Corollary 2.5. If F ∈ C(K) is closed, bounded and continuous, then F is
compact in C(K).

Theorem 2.8. Suppose F ⊆ C(X) is compact. Then, F is equicontinuous.
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Proof. Since f is compact, we can cover it with finitely many Bε/3(fi) for i ∈
[1, n]. Hence,

F ⊆
N⋃
1

Bε/3(fi).

This is equivalent to the fact that for all f ∈ F , there exists fi where i ∈ [1, N ]
for which ‖f − fi‖∞ < ε/3. Since each fi is continuous and K is compact, we
know each fi are uniformly continuous on K. That is, for all ε > 0, there exists
δi > 0 such that if x, y ∈ K then d(x, y) < δi and |fi(x)− fi(y)| < ε/3.

Let δ = mini∈[1,N ](δi) > 0 so if d(x, y) < δ then for all fi we have |fi(x) −
fi(y)| < ε/3 for all i. So for any f ∈ F choose fi with Bε/3(fi) then for all
x, y ∈ K and d(x, y) < δ, we want |f(x)− f(y)| < ε. So

|f(x)− f(y)| = · · · = ε.

and F is equicontinuous.

2.5 Application of Arzela-Asccli

We want to approximation solution to ODE. Suppose f : I ⊆ R2 → R is
continuous. We seek a solution to x′(t) = f(x(t), t) with x(0) = x0.

Euler’s method

We want to discretize the equations. Let n ∈ N and δt = I/n, the step size.
Consider only the values tK = Kδt = KI/n for K = 1, . . . , n. Then, Euler’s
approximation to solution is to solve

xk − xk−1
∆t

= f(xk−1, tk−1),

i.e., xk = xk−1 + ∆tf(xk−1, tk−1).
Suppose ∆t → 0. Does this converge to our IVP? The actual solution is a

function: so for each n ∈ N, we define a linear function φ(n)(t) defined iteratively
by φ(n)(0) = x0 and

φ(n)(t) = xk−1 + f(xk−1, x(tk))(t− tk)

for tk−1 < t ≤ tk.
Clearly, φ(n) is linear at each (tk−1, tk) and continuous on [0, T ] and φ(n)(tk) =

xk. We want to know if {φ(n)} converges to solution x(t).
Assume f is continuous. Then, there exists R = (−ta, tb) × (a × b) with

(0, x0) ∈ R and f is continuous on R̄. Since R̄ is closed and f is continuous, f
is bounded so there exists M > 0 such that |f(t, x)| ≤M for all t ∈ R̄.

Since f is bounded, x′(t) is bounded, by our construction of the ODE;
|x′(t)| ≤M . This defines a compact region W ⊆ R̄ so that

W = {(t, x)||x− x0| ≤Mt, 0 ≤ t ≤ T}
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where T = min(T0, (b− x0)/n).
Then,

φ(n)(t) = xk−1 + f(xk−1, x(tk))(t− tk)

defines our approximate solution to our IVP for tk−1 < t ≤ tk where

xk = xk−1 + ∆tf(xk−1, tk−1)

with ∆t = T/n < min(δ, δ/M) for all n ≥ N and δ chosen so that by uniform
continuity on W we have

|f(x, t)− f(y, s)| < ε

2T

for all (x, t), (y, s) ∈W and |x− y| < δ and |s− t| < δ.
Note then from defintion of φ(n)(t), we have for all ε > 0,

|φ(n)(t)− φ(n)(s)| = |f(xk−1, tk−1)(t− s)|

so we have |φ(n)(t)−φ(n)(s)| ≤M |t−s|. So φ(n)(t) is Lipschitz and so {φ(n)(t)}
is equicontinuous for all t, s ∈ [0, T ]. Also φ(n)(0) = x0 by construction. Hence,
|φ(n)(t)− x0| ≤Mt for all t ∈ [0, T ].

So we can use Arzela-Asccli so we have a subsequence nj and a function φ
which is continuous on [0, T ] with the property of uniform convergence: φ(nj) →
φ on [0, T ]. Since φ(n)(0) = x0 for all n, φnj (0) = x0 for all nj . THerefore, we
found a function satisfying φ(0) = x0.

Moreover, we can infer that there exists J ∈ N such that |φnJ (t)−φ(t)| < ε/4
for all t ∈ [0, T ].

Hopefully, φ solves x′(t) = f(x(t), t) with x(0) = x0. By construction,

d

dt
φ(n)(t) = f(xk−1, tk−1)

for all t ∈ (tk−1, tk) and

|φ(n)(t)− xk−1| ≤M |t− tk−1| < M
δ

M
= δ

for all t ∈ (tk−1, tk). So we have∣∣∣∣ ddtφ(n)(t)− f (n)(φ(n)(t), t)
∣∣∣∣ = |f(xk, tk−1)− f(φn(t), t)|

i.e.,

|f(xk, tk−1)− f(φn(t), t)| < ε

2T
.

We know φ(n)(t) is continuous and piecewise differentiable, so we can use
the fundamental theorem of calculus:

φ(nj)(t) = φ(nj)(0) +

∫ t

0

(
d

ds
φ(nj)(s)

)
ds
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for all t ∈ [0, T ]. Hence,

|φ(t)− [x0 +

∫
f(φ(s), s)ds]| = |φ(t)− [φnj (0) +

∫
d

ds
φnJ (s)ds+

∫
f(φ(s), s)ds]|

≤ |φ(t)− φ(nj)(t)|+ |
∫

[f(φ(s), s)− f(φ(nj)(s), s)]ds|

+ |
∫

(f(φ(nj)(s), s)− d

dt
φ(nj)(s))ds|

<
ε

4
+
ε

4
+
ε

4
+
ε

4
= ε

So

φ(t) = x0 +

∫ t

0

f(φ(s), s)ds

so φ is C1 and d
dtφ(t) = f(φ(t), t) with φ(0) = x0. So φ(t) solves the IVP.
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3 Application: Fourier Series

3.1 Fourier Series

Fourier series is about approximation of function, but by trigonometric polyno-
mial. The natrual norm is not supremum but the L2-norm. Take C([−π, π])
and define the norm

‖f‖2 =

(
1

π

∫ π

−π
(f(x))2dx

)1/2

This norm is special in that it is associated to an inner product:

〈f, g〉 =
1

π

∫ π

−π
f(x)g(x)dx

with ‖f‖2 =
√
〈f, f〉. Our special class of f will be the trigonometric polyno-

mials.
Call

τn =

{
T (x) =

a0
2

+

n∑
k=1

(ak cos kx+ bk sin kx)

}
and

τ =
⋃
n

τn

Then, each τn is a linear subspace of C([−π, π]). A calculation reveals that the
building blocks:

φk(x) =

{
cos kx k ≥ 1

1
, ψk(x) = sin kx

form an orthogonal family in L2-inner product. Then,

〈φk, ψj〉 = 0 = 〈φk, φj〉 = 〈ψk, ψj〉

provided that k 6= j. Furthermore,

〈φk, φk〉 =
1

π

∫ π

−π
(cos kx)2dx =

1

π

∫ π

−π

1

2
(1 + cos 2kx)dx = 1

However, note that 〈1, 1〉 = 2.
Given a Riemann integrable f , we get an element of τn by orthogonal pro-

jection. Let
a0 = 〈f, φ0〉
ak = 〈f, φk〉
bk = 〈f, ψk〉
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and

Sn(f) =
α0

2
+

n∑
k=1

(ak cos kx+ bk sin kx)

the n-th Fourier sum. Sn(f) ∈ τn where n ∈ N. As τn are linear subspaces
and this is obtained by orthogonal projection, we expect this to be the best
approximation of f in τn.

Note that Sn(f)(x) = Sn(f)(x + 2π) for all n ∈ N. So Sn(f) is continuous
and 2π-periodic. We write g ∈ C2π for g : R → R that is continuous and
2π-periodic.

We want to compare f with Sn(f) so we will restrict to f ∈ C2π. You can
also think of f ∈ C([−π, π]) as an element of C2π by periodic extension of f to
R. Note that this may crease discontinuity in f and of f ′ at multiples of π. So
we can think of the Fourier series as a 2 − π periodic continuous extensions of
f .

If T ∈ τn, then f − Sn ⊥ T , i.e.,

〈f − Sn(f), T 〉 = 0

for all T ∈ τn. In deed, write this as

T (x) = αkφk + βkψk

then

〈f−Sn(f), αkφk+βkψk〉 = αk〈f, φk〉+βk〈f, ψk〉−αk〈Sn(f), φk〉−βk〈Sn(f), ψk〉,

where
ak = 〈f, φk〉 = 〈Sn(f), φk〉
bk = 〈f, ψk〉 = 〈Sn(f), ψk〉

and so the entire thing goes to zero.
As the inner product is linear, this works for all T ∈ τn.

Proposition 3.1. For all f ∈ C2π, and for all n ∈ N,

‖f − Sn(f)‖ ≤ ‖f − T‖2 ∀T ∈ τn

and equality holds iff T = Sn(f).

Proof. Let T ∈ τn. Then,

f − T = (f − Sn(f)) + (Sn(f)− T )

Then, by Pythagorean,

‖f − T‖22 = ‖f − Sn(f)‖22 + ‖Sn(f)− T‖22 ≥ ‖f − Sn(f)‖22

and equality holds iff T = Sn(f).
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3.2 Parseval’s identity

Next, we will calculate the error in the approximation by Sn(f):

‖f − Sn(f)‖22 = 〈f − Sn(f), f − Sn(f)〉
= 〈f − Sn(f), f〉 − 〈f − Sn(f), Sn(f)〉

= ‖f‖22 −

[
a0
2
〈φ0, f〉+

n∑
k=1

(ak〈cos kx, f〉+ bk〈sin kx, f〉)

]

= ‖f‖22 −

[
a20
2

+

n∑
k=1

(a2k + b2k)

]
,

where
a20
2

+

n∑
k=1

(a2k + b2k) = ‖Sn(f)‖22

We can make two conclusions from this.

Theorem 3.1 (Bessel’s inequality). For all n ∈ N,

‖Sn(f)‖22 =
a20
2

+

n∑
k=1

(a2k + b2k) ≤ ‖f‖22

In particular, if f ∈ L2, the Fourier coefficients are square summable, i.e., in
`2.

Theorem 3.2 (Riemann lemma). If f ∈ L2, then

lim
k→∞

ak = lim
k→∞

bk = 0.

In other words,

lim
k→∞

∫ π

−π
f(x) cos kxdx = 0

Theorem 3.3 (L2-convergence criterion). Sn(f) → f in L2-norm if and only
if

a20
2

+

∞∑
k=1

(a2k + b2k) = ‖f‖22.

This is Parseval’s identity.

We will prove this later for f ∈ C2π:

Theorem 3.4. If f is Riemann integrable on (−π, π) then Sn(f) → f in the
L2-norm.
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Think of the association

f ∈ C2π 7→ (a0, {ak}, {bk}),

where a0 = 〈f, φ0〉, ak = 〈f, φk〉, a0 = 〈f, ψ0〉. Then, we can think of this map
as a linear function fc ∈ F :

C2π → R× `2 × `2

with ‖(a0, {ak}, {bk})‖2 =
a20
2 +

∑∞
k=1(a2k + b2k).

By Bessel’s inequality,

‖F(f)‖2 = ‖(a0, {ak}, {bk})‖2 ≤ | · |‖f‖22,

implying that
‖F(f − g)‖2 ≤ | · |‖f − g‖22.

So F is Lipschitz continuous map. By Parseval, F is an isometry as it preserves
the norm:

‖F(f)‖ = ‖f‖L2

Another consequence of Parseval’s identity is that F is one-to-one. If f and
g have the same Fourier coefficients, then

F(f − g) = F(f)−F(g) = (0, {0}, {0}).

But ‖f − g‖22 = ‖F (f − g)‖2 = 0, implying that f = g.
Let f ∈ C2π. Does Sn(f) → f pointwise or uniformly? Given the Fourier

series, can we recover f?

Theorem 3.5. Suppose the Fourier coefficients of f are in `1:

∞∑
k=1

|ak|+ |bk| <∞.

Then, Sn(f)→ f uniformly.

Theorem 3.6. Let gk(x) = ak cos kx+ bk sin kx. Then,

|gk(x)| ≤ |ak|+ |bk|

for all x ∈ R and for all k ∈ N.
By Weierstrass M-test,

g(x) =
a0
2

+

∞∑
k=1

(ak cos kx+ b+ k sin kx)

converges uniformly and g ∈ C2π. Since g has all the same Fourier coefficient
as f , f = g and Sn(f)→ f uniformly.

Indeed,

1

π

∫ π

−π
g(x) cos kxdx = lim

n→∞

1

π

∫ π

−π
Sn(f) cos kxdx.

47



Example 3.2.1. Show that if f ∈ C2π ∩ C1(R), then Sn(f) → f uniformly.
We can use Cauchy-Schwarz to prove this.

We observe that there are many sequences in `2 which are not in `1, e.g.,
ak = 1/k. So this suggests that not every f ∈ Cπ has uniform convergent
Fourier Series. This is the major difficulty with Fourier series – pointwise and
uniform convergence.

If it usually convenient to express Fourier series using complex notation:

eikx = cos kx± i sin kx.

Hence, the k-th order term for f ,

ak cos kx+ bk sin kx =

(
ak
2

+
bk
2i

)
︸ ︷︷ ︸

f̂(k)

eikx +

(
ak
2
− bk

2i

)
︸ ︷︷ ︸

f̂(−k)

e−ikx

and f̂(0) = a0/2. So we can write

f(x) ∼
∑
k∈Z

f̂(k)eikx

with

f̂(k) =
1

2π

∫ π

−π
f(x)e−ikxdx.

Since

ak =
1

π

∫ π

−π
f(x) cos kxdx and bk =

1

π

∫ π

−π
f(x) sin kxdx

and so
ak
2

+
bk
2i

=
1

2π

∫ π

−π
f(x)(cos kx− i sin kx)dx.

Introducing the complex inner product,

〈f, g〉 =
1

2π

∫ π

−π
f(x)ḡ(x)dx.

So we see 〈f, eIKX〉 = f̂(k). And Parseval’s identity becomes

‖f‖22 =
∑
k∈Z
|f̂(k)|2

so the fourier series is a linear isometry: C2π(C)→ `2(Z) – bi-infinite sequence
square summable.

Riemann’s lemma needs

lim
|k|→∞

∫ π

−π
f(x)eikxdx = 0.
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To explore pointwise and uniform convergence, we rewrite the partial sum.

Sn(f) =
a0
2

+

n∑
k=1

(ak cos kx+ bk sin kx)

=
∑
|k|≤n

f̂(k)eikx

=
∑
|k|≤n

1

2π

∫ π

−π
f(t)e−iktdteikx

=

∫ π

−π

1

2π

∑
|k|≤n

eik(x−t)

︸ ︷︷ ︸
Dn(x−t)

f(t)dt

=

∫ π

−π
Dn(x− t)f(t)dt

= Dn ∗ f(x)

This is a convolution!
Note that

Dn(t) =
1

2π

∑
|k|≤n

eikt

=
1

2π
e−int

2n∑
j=0

eijt

=
1

2π
e−int

eit(2n+1) − 1

eit − 1

=
1

2π
e−int

eit(2n+1) − 1

eit/2(2i sin t(t/2))

=
1

2π

ei(n+1/2)t − e−i(n+1/2)t

2i sin(t/2)
,

i.e.,

Dn(t) =
1

2π

sin(n+ 1/2)t

sin(t/2)

is the Dirichlet kernel.
Here are some nice properties:

1. Dn(t) = Dn(−t)
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2.
∫ π
−πDn(t)dt = 1 because∫ π

−π
Dn(t)dt =

1

2π

∑
|k|≤n

∫ π

−π
eiktdt

=
1

2π

∫ π

−π
1dt+

∑
k 6=0

∫ π

−π
eikt

= 1

3. |Dn(t)| ≤ n+1/2
π = Dn(0). Indeed,

|Dn(t)| =

∣∣∣∣∣ 1

2π

[
1 +

n∑
k=1

(eikt + e−ikt)

]∣∣∣∣∣
=

1

2π
(1 + 2n)

4. |Dn(t)| ≥ sin(n+1/2)t
π|t| since | sin(t/2)| ≤ |t/2|.

5. Lebesgue number is defined as λn =
∫ π
−π |Dn(t)|dt ≥ 4

π2 log n.

6. We do have concentration at t = 0, but |Dn(t)| is not very small outside a
neighborhood of t = 0. This is very different from the weierstrass kernel.

3.3 Lebesgue number

With this Lebesgue number, we can show how poorly Sn(f) can approximate
f , even for bounded or continuous in the pointwise (and uniform) sense. Let

gn(x) = Sign(Dn) =


1 Dn(x) > 0

0 Dn(x) = 0

−1 Dn(x) < 0

Then,

Sn(gn)(0) =

∫ π

−π
gn(t)Dn(t− 0)dt =

∫ π

−π
|Dn(t)|dt

= λn

≥ 4

π2
log n

Even though ‖g‖∞ = 1, its n-th partial Fourier sum ‖Sn(gn)‖∞ is large. Con-
trast this with

‖Sn(gn)‖22 ≤ ‖gn‖22.
By linear approximation at each discontinuities, we can construct a piecewise

linear continuous function fn ≈ gn of sup-norm, for which

Sn(fn)(0) ≈ λn ≥
4

π2
log n.
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Theorem 3.7 (du Bois-Raymond). There exists f ∈ C2π for which Sn(f) 6→ f
pointwise.

Example 3.3.1 (Kolmogorov). There exists f with
∫ π
−π |f(x)|dx < ∞ with

Lebesgue integral for which∫ π

−π
|f(x)− Sn(f)|dx→∞

With Sthongen hypothesis, we can prove some uniform convergence results:

Theorem 3.8 (Dini’s criterion). Suppose f ∈ C2π on (−π, π) with∫ π

−π

∣∣∣∣f(x+ t)− f(x)

t

∣∣∣∣ dt <∞
Then Sn(f)(x)→ f(x) as n→∞.

Proof. Consider

Sn(f)(x)− f(x) =

∫ π

−π
Dn(t)f(x+ t)dt−

∫ π

−π
Dn(t)f(x)dt

=

∫ π

−π
tDn(t)

f(x+ t)− f(x)

t
dt

=

∫ π

−π

t

2π sin(t/2)
sin(n+ 1/2)t

(
f(x+ t)− f(x)

t

)
dt

=

∫ π

−π

t

2π sin(t/2)

(
f(x+ t)− f(x)

t

)[
sinnt cos

t

2
+ cosnt sin

t

2

]
→ 0

by Riemann’s lemma.

Remark. If f is Holder continuous or Lipsitch continuous, i.e.,

|f(x+ t)− f(x)| ≤ C|t|α 0 ≤ α ≤ 1

then Dini’s criterion holds.

3.4 Cesaro summability

But suppose f is only continuous (or Riemann integrable). There’s no guarantee
of even pointwise convergence, but do Fourier coefficients enable us to restrict
f(x)?

Let {Sn}n∈N be any sequence (in a normed vector space) and let

σn =
S1 + · · ·+ Sn

n

the average of the first n-term.
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Lemma 3.1. If Sn → S, then σn → S also.

Proof. Note that |Sn| ≤ n for all n. Then, there exists N such that |Sn−S| < ε
for all n ≥ N . We write

σn =
S1 + · · ·+ SN

n
+
SN+1|+ · · ·+ Sn

n
.

But σn converge even if Sn diverges.

Example 3.4.1. Consider Sn = (−1)n. Then, σn = −1/n if n is odd and 0
otherwise; so σn → 0. we say that the sequence is Cesaro summable.

Applying this to the Fourier partial sums Sn(f),

Sn(f) =

∫ π

−π
Dn(x− t)f(t)dt

=

∫ π

−π
Dn(t)f(x+ t)dt

Then

σn(f) =
1

n

n−1∑
k=0

Sk(f)

=
1

π

∫ π

−π
f(x+ t)

1

n

n−1∑
k=0

D − k(t)dt

Define Fejer’s kernel:

Kn(t) =

n−1∑
k=0

D − k(t).

Then,

Kn(t) =
1

2πn

n−1∑
k=0

sin(2k + 1)t/2

sin(t/2)

=
1

2πn

1

(sin(t/2))
2

n−1∑
k=0

sin((2k + 1)t/2) sin(t/2)

=
1

4πn sin2
(
t
2

) n−1∑
k=0

cos kt− cos(k + 1)t

=
1

4πn sin2
(
t
2

) − (1− cosnt)

=
1

4πn sin2
(
t
2

) sin2 nt

2

52



So we can say

Kn(t) =
1

2πn

sin2
(
nt
2

)
sin2

(
t
2

)
Here are some properties of this kernel:

1. Kn(t) ≥ 0 for all t ∈ (−π, π)

2.
∫ π
−πKn(t)dt = 1

n

∑n−1
k=0

∫ π
−πDn(t)dt = 1

3. Kn(t) ≤ Kn(0) = 1
2πn

(n/2)2

(1/2)2 = n
2π .

4. Kn(t)→ 0 uniformly on away from t = 0?

Indeed, 0 ≤ Kn(t) ≤ 1
2πn

1
sin2(δ/2)

for δ < |t| ≤ π. Hence,

sin2

(
t

2

)
≥ sin2

(
δ

2

)
on δ < |t| ≤ π. Hence,

0 ≤ Kn(t) <
1

2πn

1

s ∈2 (δ/2)

in this region.
So Kn(t) is a good kernel which is an approximation to the identity

Theorem 3.9 (Fejer’s theorem). For all f ∈ C2π,

σn(f)→ f

uniformly as n→∞, i.e., Fourier seires is uniform Cesaro summable.

Remark.

σn(f) =
1

n

n−1∑
k=0

Sk(f)

=
1

n

n−1∑
k=1

∑
|l|≤k

cle
ilx

Corollary 3.1. If f ∈ C2π, then ‖Sn(f)− f‖`2 → 0 uniformly.

Proof. As ‖f − Sn(f)‖`2 ≤ ‖f − σn(f)‖`2 in subspace τn, hence for any ε > 0,
there exists N such that

‖f − σn(f)‖`∞ <
ε√
2
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Therefore,
‖f − Sn(f)‖`2 ≤ ‖f − σn(f)‖`2

=

√
1

π

∫ π

−π
|f − σn(f)|2dt

≤
√

2‖f − σn(f)‖`∞
< ε

for all n ≥ N .

Remark. Since we can approximate cos kx, sin kx using Taylor’s expansio which
converges uniformly, we obtain a polynomial approximation to f , i.e., another
proof of Weierstrass approximation theorem.

Theorem 3.10. If f ∈ C2π ∩ C1(R), thn Sn(f)→ f uniformly.

Proof. OLet f ′ ∈ C2π and its Fourier coefficients are

αk = 〈f ′, φk〉 =
1

π

∫ π

−π
f ′(x) cos kxdx

=
1

π
{f(x) cos kx|π−π +

∫ π

−π
k sin kxdx

= kbk

Note that α0 = 〈f ′, 1〉 = 0. Similarly,

βk = 〈f1, ψk〉 = −kak.

In other words,

bk =
αk
k
, ak = −βk

k

Now,
∞∑
k=1

|ak| =
∞∑
k=1

βk
k

≤

( ∞∑
k=1

1

k2

)1/2( ∞∑
k=1

β2
k

)1/2

<

√
π2

6
‖f ′‖`2 <∞

by Parseval’s. Similarly,
∑
|bk| <∞.

Then, we have
∞∑
k=1

|ak|+ |bk| <∞.
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By Weierstrass M -test,

Sn(f) ≤ a0
2

+

∞∑
k=1

(|ak|+ |bk|) <∞.

Hence, Sn(f)→ g uniformly. But is g = f? Yes. Note that ‖Sn(f)− g‖`2 → 0.
But ‖Sn(f)− f‖`2 → 0. By uniqueness of limit, f = g on (−π, π).
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4 Lebesgue theory

4.1 A taste of Lebesgue’s theory

Recall that Riemann integral for function f exists if there exists partition P
with 0 ≤ U(f, P ) − L(f, P ) < ε. In other words, oscillation in small interval
must be small.

Theorem 4.1 (Lebesgue). f is Riemann integrable iff f is continuous almost
everywhere.

Example 4.1.1. The function

f(x) =

{
1 x ∈ Q
− x /∈ Q

is not Riemann integrable because it is discontinuous everywhere.

The idea is to partition the range, not the domain. Let P = {y0 < y1 <
· · · < yn} be a partition of the range of f . Define its pre-images

Ej = {x ∈ (0, 1) : yj−1 ≤ f(x) < yj}.

If the Ej ’s are interval, we can measure their total length, m(Ej), and we are
back: ∑

yj−1 ≤
∫ 1

0

fdx ≤
n∑
j=0

yjm(Ej)

Now, small changes on f do not mean small change in the domain but relates
to measurability of sets.

We want to extend the notion of length of an interval to a notion of measure
for measurable sets. In particular, the Lebesgue interval should be defined for
functions such that

{x : c ≤ f(x) < d}
are measurable. Those functions will be called measurable.

Example 4.1.2. Consider

ψE(x) =

{
1 x ∈ E
0 x /∈ E

is measurable iff E is measurable.

Indeed,
{x : 1/2 < ψE(x) < 2} = E,

i.e., what is integrable becomes question of what is measurable, not just conti-
nuity, since we want ∫ b

a

ψE(x)dx = m(E).

So what do we want from a measure? It should extend the notion of length:
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1. m([0, 1]) = 1

2. m(E + h) = m(E) where E + h = {x+ h|x ∈ E}

3. If Em are pairwise disjoint, then

m(∪Em) =
∑

m(Em)

There are no measures that satisfy all these properties for all sets of R. So we
need to restrict the class of measurable sets and hence the class of measurable
functions, but they will include continuous functions.

4.2 Sigma algebra

Let X be a set. It can be [0, 1],R, . . . .

Definition 4.1. A family X of subsets of a set X is a σ-algebra if

1. ∅, X belongs to X

2. If A ∈ X , then Ac ∈ X

3. If {Am} is a sequence of sets in X , then ∪∞n=1An ∈ X .

The pair (X,X ) is called a measurable space.

Remark. By De Morgan’s rule,(⋃
α

Aα

)c
=
⋂
α

Acα,

(⋂
α

Aα

)c
=
⋃
α

Acα,

Hence ∩Bm ∈ X if Bm ∈ X

Example 4.2.1. X , all subsets of X, is a σ-algebra.

Example 4.2.2. X = {∅, X} is a σ-algebra.

Example 4.2.3. Let X = R. The Borel algebra is the σ-algebra B generated by
all open intervals (a, b) ⊂ R. Any set B ∈ B is called a Borel-set. As any open
set is the union of (disjoint) open intervals, the Borel algebra is the smallest
sigma algebra containing open and closed sets.

Measure is a functional defined on X which good properties extending length.

Definition 4.2. A measure if an extended real-valued function µ : X → R such
that

1. µ(∅) = 0

2. µ(E) ≥ 0 for all E ∈ X .
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3. µ is countably additive. Let {Em} be any disjoint sequence of sets in X .
Then µ(∪Em) =

∑
µ(Em). If µ(∪Em) = ∞ then either µ(Em) = ∞ for

some m or
∑
µ(Em) is divergent.

Definition 4.3. If a measure takes its value in R but not in R ∪ {∞}, we say
that it is finite.

Definition 4.4. If there exists {Em} of sets in X with X = ∪Em with µ(Em) ≤
∞, then µ is σ-finite.

Example 4.2.4. Note that R = ∪(−m,m) and µ(−m,m) = 2m < ∞ So
Lebesgue measure will be σ-finite.

Example 4.2.5. Let (X,X ) be a measurable space with X . the σ-algebra of
all subsets of X. Let p ∈ X. Define for E ∈ X

µ(E) =

{
0 p ∈ E
1 p /∈ E

This is a finite measure called the unit measure concentrated at p.

Example 4.2.6. Let X = N and X be all subset of N. The counting measure,
µ(E), is defined as the number of elements in E if E is a finite set and ∞
otherwise. This measure is σ-finite.

We call (X,X , µ) a measure space where X is a σ-algebra and µ is a measure
defined on X . An important example is the Lebesgue measure.

The idea is to define an “an outer measure”, m∗, which is defined on all
subsets of R by

m∗(E) = inf
E⊂∪Im

∞∑
m=1

`(Im),

where Im is an open interval. One can show that

• m∗ is subadditive, i.e., m∗(∪Em) ≤
∑
m∗(Em)

• m∗((a, b)) = b− a = `((a, b)).

Definition 4.5 (Caratheodory’s definition). A set E is m∗-measurable if for
each set A, m∗(A) = m∗(A ∩ E) +m∗(A ∩ Ec), i.e., E and Ec are sufficiently
separated that they divide an arbitrary set A additively.

Theorem 4.2 (Caratheodory extension theorem). The collection X of all m∗-
measurable set is a σ-algebra containing the intervals. Moreover, m∗ is countable-
additive on that collection X , and m∗ is σ-finite.

We define the Lebesgue measure µ = m∗ on X . We have B ⊂ X (the
Borel set) since B is the smallest σ-algebra containing the intervals. There rae
Lebesgue measurable sets that are not Borel set, but the sets have measure zero:

X = B ∪ {sets of measure zero}

One can show that there are non-measurable sets via the axiom of choice.
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Lemma 4.1. If m∗(E) = 0 then E is measurable.

Proof. Let A be any set. A ∩ E ⊂ E so m∗(A ∩ E) ≤ m∗(E) = 0. Also,
A ∩ Ec ⊂ A so

m∗(A) ≥ m∗(A ∩ Ec) = m∗(A ∩ Ec) +m∗(A ∩ E)

Note that A = (A ∩ E) ∪ (A ∩ Ec) so

m∗(A) ≤ m∗(A ∩ E) +m∗(A ∩ Ec).

Theorem 4.3. Let µ be a measure on σ-algebra X . If E,F ⊂ X and E ⊆ F ,
implying that µ(E) ≤ µ(F ). If µ(F ) <∞ then µ(F \ E) = µ(F )− µ(E).

Theorem 4.4 (Continuity of measure). Let µ be a measure on a σ-algebra X .

• If {Em} is an increasing sequence in X , such that Em ⊂ Em+1, then
µ(∪Em) = limµ(Em).

• If {Fm} if a decreasing sequence in Fm+1 ⊆ Fm and if µ(Fi) < ∞ then
µ(∩Fm) = limµ(Fm).

Proof. WLOG, E = ∩Fm = ∅ otherwise replace Fi by Fi \E and ∩(Fi \E) = \.
Indeed, note

F1 = F1 \ F2 ∪ F2 \ F3 ∪ · · ·

and
Fn = Fn \ Fn+1 ∪ Fn+1 \ Fn+2 ∪ · · · .

Hence,

∞ > µ(Fi) =

∞∑
i=1

µ(Fi \ Fi+1)

and

µ(Fn) =

∞∑
i=n

µ(Fi \ Fi+1)

is the remainder of a convergent series and hence

µ(Fn)→ 0 = µ(∩Fn).

Definition 4.6. A property hold (µ) almost everywhere if the set where it fails
to hold has measure zero, i.e., there exists N ∈ X with µ(N) = 0 such that the
property holds in X \N .

Definition 4.7. f = g almost everywhere iff µ{x ∈ X : f(x) 6= g(x)} = 0.
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Example 4.2.7. Take

f(x) = ψE(x) =

{
1 x ∈ E
0 x /∈ E

with µ(E) = 0, (e.g., µ(Q) = 0). Then, f(x) = ψQ(x) = 0 almost everywhere.

Definition 4.8. We say fn → f almost everywhere iff there exists a set N with
µ(N) = 0 such that fn(x)→ f(x) for all x /∈ N .

Example 4.2.8. Consider fm(x) = xm on [0, 1]. Then, fm(x) → 0 for x 6= 1,
i.e., fm → 0 almost everywhere.

4.3 Measurable Functions

Definition 4.9. A real-valued valued function f is (Lebesgue) measurable if
∀α ∈ R:

{x ∈ X : f(x) < α}

is measurable in X .
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Practice problems

Example 4.3.1. f is continuous on [0, 1]. Find the limit, and prove your
answer:

lim
n→∞

∫ 1

0

(n+ 1)xnf(x)dx

Proof. First, f is continuous on [0, 1] so there exists δ > 0 such that |f(x) −
f(1)| < ε/2 when x ∈ (1 − δ, 1]. Second, f is bounded on [0, 1] so there exists
M = ‖f‖∞ <∞. By triangle inequality, ... Then,∣∣∣∣∫ 1

0

(n+ 1)xnf(x)dx− f(1)

∣∣∣∣ =

∣∣∣∣∫ 1

0

(n+ 1)xnf(x)dx−
∫ 1

0

(n+ 1)xnf(1)dx

∣∣∣∣
=

∣∣∣∣∫ 1

0

(n+ 1)xn(f(x)− f(1))dx

∣∣∣∣
≤
∫ 1

0

(n+ 1)xn|f(x)− f(1)|dx

=

∫ 1−δ

0

(n+ 1)xn|f(x)− f(1)|dx+

∫ 1

1−δ
(n+ 1)xn|f(x)− f(1)|dx

≤
∫ 1−δ

0

(n+ 1)xn(2M)dx+

∫ 1

1−δ
(n+ 1)xn

( ε
2

)
dx

≤ 2M
( ε

4M

)
+
ε

2
= ε

Example 4.3.2. If
∑∞
n=1 |an| <∞, show that

∑∞
n=1 ane

−nx is uniformly con-
vergent on [0,∞).

Proof. Let fn(x) = ane
−nx. Since e−nx ≤ 1 for all x ∈ [0,∞), we have

|fn(x)| = |ane−nx|
= |an| · |e−nx|
≤ |an|

So ‖fn‖∞ = |an|. Then,

∞∑
n=1

|fn(x)| ≤
∞∑
n=1

|an| <∞

By M -test,
∑
ane
−nx converges uniformly on [0,∞).

Example 4.3.3. If we assume only that an is bounded, show that
∑
ane
−nx

is uniformly convergent on [δ,∞) for every δ > 0.

61



Proof. Since (an) is only assumed to be bounded,
∑
an need not converge (for

example, consider an = 1/n). So we can’t use |an|e−nx ≤ |an|e−n·0 = |an| as in
part (a).

Fix δ > 0 and set fn(x) = ane
−nx. Let N = sup |an|. Then,

|fn(x)| ≤Me−nδ

for all x ∈ [δ,∞). So ‖fn‖∞ ≤ Me−nδ Choose N ∈ N large enough so that for
all n ≥ N , we hvae e−nδ ≤ 1/n2. For such N , we have

∞∑
n=1

|fn(x)| =
N−1∑
n=1

|f(x)|+
∞∑
n=N

|f(x)|

<

N−1∑
n=1

Me−nδ +

∞∑
n=N

M

n2
<∞

Example 4.3.4. Let M = (0,∞) with d(x, y) = |1/x − 1/y|. Is (M,d) com-
plete? Justify your answer.

Proof. Consider the sequence (xn) = (n)∞n=1 and let ε > 0 be given. Choose
N ∈ N so that for all n,m ≥ N , 1/n, 1/m < ε/2. By the triangle inequality,

d(xn, xm) =

∣∣∣∣ 1n − 1

m

∣∣∣∣ ≤ 1

n
+

1

m
< ε

So (xn) is Cauchy in (M,d). But xn → 0 as n→∞ in (M,d) and 0 /∈M .

Example 4.3.5. If f : (0, 1)→ R is uniformly continuous, show that limx→0+ f(x)
exists. Conclude that f is bounded on (0, 1).

Proof. Let (xn) ⊂ (0, 1) be a decreasing sequence such that xn → 0 in R. Thus,
(xn) is Cauchy.

Since uniformly continuous functions map Cauchy sequences to Cauchy se-
quences, (f(xn))∞n=1 is Cauchy in R. Since R is complete, there exists c1 ∈ R
such that limn→∞ f(xn) = c1. So limx→0+ f(x) exists. In the same way,
limx→1−1 = c2 exists.

Defin f̄ : [0, 1]→ R by

f̄(x) =


c1 if x = 0

f(x) if x ∈ (0, 1)

c2 if x = 1

By definition, f̄ is continuous on the compact set [0, 1] so f̄ is bounded on [0, 1]
and thus bounded on (0, 1). But since f̄(x) = f(x) on (0, 1), we have that f is
bounded on (0, 1).
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Example 4.3.6. Let (X, d) and (Y, ρ) be metric spaces, and let f, fn : X → Y
with fn → f uniformly on X. If each fn is continuous at x ∈ X, and if xn → x
in X, prove that limn→∞ fn(xn) = f(x).

Proof. Since fn is continuous, f is continuous. Let ε > 0 be given. By continuity
of f at x ∈ X, there exists δ > 0 so that d(x, y) < δ implies ρ(f(x), f(y)) < ε/2.
Using the fact that xn → x, we can choose N1 ∈ N large enough so that for
all n ≥ N1, d(x, xn) < δ implies ρ(f(x), f(xn)) < ε/2. Since fn → f on X, we
can find N2 ∈ N such that n ≥ N2 implies ρ(fn(xn), f(x)) < ε/2 independent
of x ∈ X. In particular, ρ(fn(xn), f(xn)) < ε/2 for any fixed xk ∈ (xn)∞n=1.

Let N = max{N1, N2}. Then, for all n ≥ N we have by the triangle inequal-
ity,

ρ(fn(xn), f(x)) ≤ ρ(fn(xn), f(xn)) + ρ(f(xn), f(x)) < ε

Example 4.3.7. Show that there cannot be a sequence of polynomials Pn for
which Pn → sinx uniformly on R.

Proof. Suppose in order to derive a contradiction that there exists a sequence
of polynomials Pn such that Pn → sinx on R. Let ε > 0 be given. Then, there
exists N ∈ R such that for all n ≥ N and for all x ∈ R, we have

−ε < Pn(x)− sin(x) < ε

Rewriting, we have
−ε− 1 < Pn(x) < ε+ 1

So |Pn(x)| < ε + 1. However, polynomials are unbounded and this is a contra-
diction.
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