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1 Metric space theory

1.1 Introduction

Example 1.1.1. (R,|-|) is a metric space, where | - | denotes absolute value.
Example 1.1.2. (R", Euclidean norm) is a metric space.

Example 1.1.3. Cfa,b] denotes space of continuous functions on [a,b] and is
an infinite dimensional metric space.

1.2 Metric spaces

In elementary analysis, we went over the notion of real numbers, sequences,
connvergence, continuity, integration and differentiation. An important tool
was the absolute value as it allowed us to measure distance between two points.

Definition 1.1 (Absolute value). The absolute value between x and y is written
as |z — y| and measures distance on number line.

Maurice Frechet noted that much of analysis may be extended to to abstract
sets M, provided there is a reasonable definition of distance between points. In
other words, much of elementary analysis depends not on specific properties of
R, but only on its metric properties and can be abstracted.

Recall that a sequence (X,,)nen converges to x in R if Ve > 0, there exists
N € N such that |2, — x| < € for all n > N. In order to extend this notion, we
need to define distance. What is a reasonable way to define distance?

Definition 1.2 (Distance). A function d : M x M — R is a metric on M if
the following holds:

(i) 0> d(z,y) <oo Vz,ye M.

(i) d(x,y) =0 iff x = y. If this condition does not hold, d is called a pseudo-
metric.

(i4i) d(x,y) = d(y,x)Vz,y € M.

() d(z,z) < d(x,y) +d(y,z) Vx,y,z € M. This generalizes the triangle

inequality.
Remark. In R2, the smallest distance between two points is the line.
Definition 1.3. We say (M, d) define a Metric space.
Example 1.2.1. (M =R, d(z,y) = |z — y|) is a valid metric space.

Example 1.2.2. d (z,y) = |e”® — e~ Y| is a metric on R.



Example 1.2.3 (Discrete metric).

0 z=y
L z#y

is a valid metric on any set M. In particular, note that any set M has at least
one metric.

ddisc(x?y) = {

Of course, changing the metric d changes the geometry of disks, our notion
of convergence, continuity, etc. For example, (R, d(z,y) = |z —y|) and (R, dg..)
are very different as Metric spaces.

1.3 Normed vector spaces

There is a natural metric to choose in this case to keep the inherent structure
of the space.

Definition 1.4 (Norm). Let V be a vector space (over R or C). A norm on 'V
is a function || - || : V' — R with the following properties:

(i) 0<|v]| <0 VveV.
(it) ||v]| =0 < v=0.
(i17) || = |alljv]] VaeR,veV.

(i) [lv+wll < vl + [Jw].

Proposition 1.1. IfV is a vector space with norm || -||, then (V,d) is a metric
space with d(v,w) = ||v —w||. We call this metric the usual metric.
Note that
d(v,w) = [l —wllflv = u+u - w]|

< v = wll + flu = w]|
=d(v,u) + d(u,w)

Clearly, ||z|| = |x| define a norm on R so the usual metric is an example of this
proposition. However, d. and dg;.., defined above, are valid metric which don’t
come from norms.

Example 1.3.1. d(z,y) = (z — y)? is not a metric as it fails to satisfy the
triangle inequality. For example, consider x = 0 and y = 1. Then,

d(0,1) > d(0,1/2) +d(1/2,1).
Example 1.3.2. d(x,y) = v?—%? is not a metric because d(z,y) = 0 iff z = +y.

Example 1.3.3. d(z,y) = /| — y| is a metric. In particular, the triangle
inequality holds:

Vig—yl < Vlz—z+2 -yl < Ve — 2| +]z —y




Example 1.3.4. d(z,y) = 1_'&};3‘2!‘ is a metric. LetF (¢) = ¢/(1+¢). Then, we

can show that
F(a+b) < F(a)+ F(b).

Example 1.3.5. Consider a Euclidean space R". Then, the usual metric is
given by

d(xvy) =

Hence, we have the Euclidean norm:

We can write this using the inner product:
]|z = (z,z)
To verify that this is indeed a norm, we need Cauchy-Schwartz inequality:

[z, 9)| < llzll2llyll2
To prove the inequality, let t € R. Then, for all 2,y € RV, we have
0 < flo+tyl3 = (x + ty, = + ty)
= llz)* + £]lyll* + 2t(z,y) VtER

This is a quadratic in ¢ so the discriminant must be non-positive. In other
words,
A’ + Bt+C >0 < B> -4AC <0.

Hence,
Az, ) < 4lzPlyl? = Kz )l < llzllly]

Now, the trinagle inequality follows easily for ||z| = /{z,z):

lz +yl* = llzll + lyl* + 2(, )
<l + iyl + 2ll= ] 1y

= ([l + lyll)’

Note that other norms are possible on R". For example,

N
d(z,y) =Y |w; — v
j=1



is a metric where the associated norm is given by ||z||; = Zjvzl |25

N 1/p
dp(2,y) = <Z |; — yj|p>

=1

/p
is a metric where the associated norm is given by ||z|, = (Zjvzl |acj\p) .
Finally,
doo(2,y) = |7 = ylloo

is a norm where ||z|lcc = sup |z;|.
1<j<N

1.4 Neighborhood

Now that we have a distance designed on a space (M,d), we can study its
geometry.

Definition 1.5. The open ball B, (x) of radius v > 0 centered at x is
By(x) ={y € M|d(z,y) <r}.

Definition 1.6. 4 set A C M is bounded if there exists a ball Br(x) with

Definition 1.7. A set U is a neighborhood of x if there exists r > 0 with
B.(z) <U.

Example 1.4.1. In R equipped with the usual metric, B.(z) = (z — r,x + r),
an open interval. In R? and R3, B,(z) is the round disk and a spherical ball
centered at x.

Changing metric changes the shape of the ball.
Example 1.4.2. First, consider (R?,dy,). Then,
B, (%) = {j € R*|doo (7, 7) < 1}

Note that L
deo(Z,7) <1 <= sup(|z1 — y1], |12 —yo|) <7

= |z =yl w2 —y2| <7
Therefore, B,.(Z) is a square.
Example 1.4.3. Consider a set M equipped with discrete topology. If r <1,
dywe(T,y) <1 <1 = y=1.
Hence, By(z) = {z}. If r > 1,
Ayse <T7 = y € M.

Hence, B,(x) = M. Therefore, all sets are open and all sets are closed.



Definition 1.8. Let (X,,)nen be a sequence in (M,d). We say X, — X for
some x € M if Ve > 0 there exists N € N so that d(X,,X) < € for alln € N.
Equivalently, X,, — X if Ve > 0 there exists N € N such that X,, € Be(x) for
alln > N. Or, for every neighborhood U of = there exists N € N with X,, € U
for allm > N.

In general, the choice of the metric may affect convergence.

Example 1.4.4. Let M = R equipped with discrete topology. Suppose X,, —
X, choose € = 1/2. Then, there exists N € N such that d(X,,,X) < € for all
n > N. In other words, X,, = x for all n > N. So {X,,} is convergent in dg,.
iff {X,,} is eventually constant. For example, X,, = 1/n does not converge.

Example 1.4.5. Let M = R? and d = d,. Take a ball B*(z). Note that

B\Q/Es(e) C BX(z) C B?/ie(e)

So convergence in sup norm is equivalent to convergence in Euclidean metric.

If X,, = X in (R?,dy) then X,, — X in (R?,dy). Conversely, if X,, — X in
(R?,do) then X,, — X in (R?,dy). Hence, (R?, d.,) and (R?, dy) are equivalent
in the sense that they have the same convergent and divergent sequences.

Theorem 1.1. Let || -|| be any norm in R™. Then, (RN, ||z —yl|) is equivalent
to the Euclidean metric on RN . More precisely, one can show that there exists
c1,co > 0 with

alelz < ||zl < coflzflz Vo e RY.

1.5 Sequence spaces

Infinite dimensional spaces are more interesting. Let
W ={z = (z1,22,23,...)|xm € R}.
W is a vector space on R. We can define family of norms on subspaces of W.

Definition 1.9. # = {x € W|>_, |zx|Poo} for 1 < p < co with norm

oo 1/p
2], = <Z ku”>
k=1

Definition 1.10. (> = {z € W|supy, |zx| < oo} with norm

lzllp = sup [z

Let’s review a series of non-negative terms. S, = 22:1 ar where a; > 0
forms a sequence (Sy,)nen in R, since each a > 0,

Sny1=Sn + any1 > Sy



Sequence is monotone increasing.
If S, — S, we say S,, converges. If S,, — oo, we say S, diverges. If S, is
bounded, it converges to
S =sups, =limS,
n

Theorem 1.2. /., is a normed vector spaces.
Proof. e ||z]ec = 0; [[2]ac = 0 iff supy || = 0
o [lozfloc = ||z -
o Let 2,y € . Then,

15+ y5ll < las] + [ys]
< l#lloo + [ylloo

Hence, ||z]/oc + ||y]lco is an upper bound for |z; + y;||. Therefore,

12+ ylloo < ll#lloo + l[4ll

Theorem 1.3. {, is a normed vector spaces.

N 1/p
<Z |$kp> = [lz[|~p,

k=0

Proof. For 1 < p < oo, call

the p-norm of the N-tuple. So the triangle inequality is given by

Iz +ylvp < llzllnp + lyllvp
< llzllp + llyll»

for all N e N.
Now, the sequence (||z+y||n,p) Nen is monotonically increasing and bounded
above so its limit exists.

I+l = Jim e+l < el + 1yl

O

Example 1.5.1. Consider a sequence (X,,) such that further subsequence con-
verges to X. Show that the entire sequence X,, converges to X.

Instead, we can prove its contrapositive. Suppose X,, doesn’t converge to X,
i.e., there exists € > 0 and k € N and exists my, > k such that d(X,,,,X) > e
Then, any subsequence of {X,,, } converge to X.



1.6 Spaces of continuous functions

Another important normed vector space is
C(la,b]) ={f : [a,b] = R| f is continuous}

with sup norm:

[flloc = sup [f(z)].

z€[a,b]

Since f is continuous on [a, b], the supremum is really a maximum. This defines
a norm.

Example 1.6.1. Another useful norm on C([a, b]) is the L!-norm:

b
17 = / £ (@)ldz.

Verify that this is a norm.

These define very different metric spaces. Convergence in | - || implies
uniform convergence. Note that convergence in || - ||~ implies convergence in L'
but not other way around.

1.7 Open and closed

Definition 1.11. Let (M,d) be a metric space, U C M. We say x € U is an
interior point of U if there exists € > 0 such that Bc(x) C U.

Definition 1.12. We say that the set U is open if every x € U is an interior
point.

Example 1.7.1. In any metric space, the vall B,.(x) is always open.

Proof. Let y € B,(z) and let s = d(y,x) < r. Let e = r —s. We claim that
Be(y) € Br(z).
Let z € B.(y). Then, d(y,z) < € and

d(z,z) < d(z,y) + d(y, )
< Ss+e€

=r
This implies that z € B,(x) and therefore,
Be(y) € By().
O

Example 1.7.2. Which are the open sets on (M, dy..)? Since By /s(x) = {z},
for every set S C M, every point in € S is an interior point so all subset of
M are open.



Theorem 1.4.

o Let {Un}acr be an arbitrary collection of open sets. Then, U = |J,c; Ua
1S open.

o IfUy,... .U, are each open, then so is their intersection.

Proof. First, let x € U. Then, there exists o € I such that x € U,, where U,,
is open. So there exists € > 0 such that

Be(z) CUs, CU

and x is an interior point of ¢/. This is true for all x € U and so U is open.
Second, let € Uy N---NUy,. Then, x € U; for all j € 1,...,n. Then, there
exists €; > 0 with B, (x) CU;. Let € = min; ¢; > 0. Then,

B.(x) C B.,(x) CUy Vj.

Example 1.7.3.
()
et n'n

is not open in the standard topology in R.

Theorem 1.5. In R with the usual norm, if U is open, then U is the disjoint
union of countably many open intervals.

Proof. Let x € U and define

a; = inf{a: (a,z] CU}
by = inf{b: [x,b) C U}

Since U is open, there exists € > 0 such that (z — ¢,z 4+ ¢) C U such that
a; < o < bg. Also,
z€l, = (azb,) CU

and gives the longest interval containing x lying inside ¢ (think about this; it
follows fom the definition of the interval).

We claim the following: for all y € U, either [, = I, or [, NI, = @. If
I,N1I, # @, then I, U I, is open, contains x, contradicting the definition of
I, = (az,b;) and I, = I,,.

Therefore, intervals {I,} are disjoints. To see that there are only countably
many, choose a rational number ¢, € I,. The distinct intervals are disjoint
and so the ¢, are distinct but Q is countable. There is no such classification in
R. O

Definition 1.13. A set F C M is closed if its complement M \ F' is open.

10



Note that a set can be both open and closed or can be neither open nor
closed.

Example 1.7.4. (0,1] is neither open nor closed in the standard topology.

Theorem 1.6. If {F,, |« € I} is an arbitrary collection of closed sets, (¢ Fa
is closed.

Theorem 1.7. If F1, Fs, ..., F,, are closed, their union is closed.

Definition 1.14. x is a limit point of a set A C M if Ve > 0, there existsy € A
with y # x and y € Be(x).

Lemma 1.1. Equivalently, x is a limit point of A iff there exists a sequence
{z,} in A with x,, # x for alln € N and z,, — .

Proof. Let € = 1/n, then there exists x,, € A, ¥, # x such that x, € By, ().
In other words, d(x,,z) < 1/n for all n. This is equivalent to saying that
Tp — .

Now, assume that for all € > 0, there exists N € N such that d(z,,z) < €
for all n > N and x,, # x. Therefore, for all € > 0 there exists y € A with y # x
and y € Be(z). O

In fact, the sequence x,, may be chosen to be distinct.

Example 1.7.5. 0 is a limit point of A = {1/n},en but 1/n is not a limit point
of A.

Example 1.7.6. Consider A = (—1,1)U{2}. Limit points are given by {—1,1}.

Lemma 1.2. F is closed if and only if Bo(x) N F # & for all € > 0 implies
xeF.

Proof. F'is closed iff M \ F' is open. Let x € M \ F. Then, there exists ¢ > 0
such that B.(z) € M \ F. In other words, B.(z)NF = @. Soif B(z)NF # &
for all ¢ > 0. Then, x € F. O

Theorem 1.8. A is closed iff A contains all its limit points.

Proof. Suppose A is closed and © € M \ A, which is open. Then, there exists
€ > 0 such that
B(x) CM\A < B(zx)NA=o

Then, x is not a limit point of A. So all limit points of A are inside A.
Suppose A contains all its limit points and consider « € A. Then, x is not a
limit point. Then, there exists € > 0 such that BeN A = @ and

B.(z) C M\ A.
Therefore, x is an interior point of M \ A. This is true for all z € M \ A and so

M\ A is open, implying that A is closed. O

11



Corollary 1.1. A is closed iff whenever x,, — x with (,)neny C A, then z € A.
Corollary 1.2. A is closed iff
B(x)NA#@Ve>0 = z € A

Definition 1.15. For every set A C M,

(i) the interior of A, A° or int(A) is the largest open set contained in A:
int(A) = |_J {Uopen € A}
(ii) The closure of A, A is the smallest closed set which contains A:

A:ﬂ{F closed| A C F}

Proposition 1.2. A° is a set of all interior points of A.

Proof. Note that A° is a subset of all interior points of A. If x € A°, then as
A° is open, there exists € > 0 such that

Be(z) C A° C A.

Now, we want to show that other direction. Since if z is an interior point
then there exists € > 0 such that B, C A and this is an open set. Since A° is
the largest open set, A C A°. O

Proposition 1.3. 2 € A iff B.(x) N A# @ for all € > 0.

Proof. Suppose B.(z)NA # & for all € > 0. Hence, B.(x)NA # @ since A C A.
But A is closed so z € A.

If z € A and let € > 0 be given. Assume that B.(z) N A = @. Then,
A C (Bc(z))¢. Because definition of A, we have

A C (Be(x))".
This is a contradiction because x ¢ (B.(z))°. O
Theorem 1.9. Let A’ be the set of all limit points of A. Then,
A=AUA.

Proof. Recall that z € A iff B((x) N A # @ forall e > 0. Let z € A. If z € A,
there is nothing to prove. If x ¢ A, we want to show that x € A’.

We have B.(xz) N A # for all € > 0. In other words, there exists y # = such
that y € A and y € B.(z). This means that z is a limit point by definition. [

Example 1.7.7. Consider A = (—1,1) U {2}. Then, A = [-1,1]U {2}.

Corollary 1.3. = € A iff there exists a sequence (T )nen With T, — .

12



Example 1.7.8. Consider fo, | - [2. Let A ={a € {5 : |z32] < 1}.
We can easily show that the set A is not open. For example,

(0,0,0,...,0,1,0,0,...).

is not an interior point. For all € > 0, let
y=1(0,0,0,...,0,14¢/2,0,...) € %
Then,
€
o=yl = 5 <

ie., y € B.(z) but y ¢ A. Moreover, we have

A° ={x €’ |3 <1}

and the proof for this is left as an exercise.
The set A is closed. Let (™) be any sequence in A which converges z(™ — x.
We must show that x € A. Note that

232 — 259 | < ||z — 253 |le,

VY g — 22 = Jle = 2™,

|£L’32 — IE:(STQL)‘ —0

because
So

asn — oo. But (™ € A so |x§g)\ <1 for all n. Hence, |z32] <1 also z € A. So
x is closed.

Example 1.7.9. Consider

B:{ZE€€2|$J|§1VJ}

= ﬂ{x6€2:|zj\§1}

j=1
This is an intersection of closed sets so B is closed.

Example 1.7.10. Prove that
B® ={x e ?:|z;] < 1Vj}.
Example 1.7.11. Consider a set of truncated sequence
C ={re€*:3k e N with z; =0Vj >k}
Is this set open? For x € C let

y=(y1,y2,---)

13



with y; :J:j—i—g—j. So y; =€2/27 for j > k and y ¢ C. But

s0 y € B(x) for all ¢ > 0 with y ¢ C. So z is not an interior point. And so
int(C) = @.
Is this set closed? Let y € ¢5. Let

y™ = (Y1, 92, ... Yns...) € CVn.
By practice problem 40 from page 48,
y" =y

in ¢3-norm. Hence, y € C and C = /5 and so C' # C. So C is not closed.
However, we say that the set C' is dense in /5.

Example 1.7.12. We are given ({s, || - ||oo). Let
D={zr€ls :FkeNz; =0Vj >k}

By practice problem 40 from page 48, D is not dense in ¢, and so its closure
is a subset of ¢, but different from /..
We claim that

D=cy={r €l : z;j +0as j— oo}

Suppose 2™ € D and ("™ — z in fo-norm. Then, for all € > 0, there exists
N € N such that
2" =z < [lo™ —alloe < e,

for all n > N. Since (™ € D, there exists k such that zgn) =0 for all j > k,
ie.,
N
2] = |z 2§V <e.
This impliesi that z; — 0 in {-norm and D C ¢.
Conversely, if z € ¢q, let

2™ = (z1,29,...,2,,0,0,0,...) € D.

Then,
(n)

|z = 2" o = sup |z; — 2|
>1

J

= sup |zj|.
j>n+1

Since € c¢o, for all € > 0, there exists N such that for all j > N, |z;| < e.
Thus, for all n > N,
lz — 2™l <,

ie., (™ = z in fo-norm.

14



Example 1.7.13. Consider a space of continuous functions N = C([0,1])
equipped with a sup-norm. Then,

By (f) ={g € C([0,1]) : llg = flloo <€}
={g€C([0,1)) : f(z) —e<g(x) < fz) +eVz €[0,1].}

Example 1.7.14. Consider a space of continuous functions N = C([0,1])
equipped with a sup-norm. Then,

By(f) ={9€C([0,1]) : [lg = flloo <€}
={ge C(0,1]) : f(z)—e<g(z) < f(z)+eVz €[0,1].}
Then, consider
A={feN:0< f(z)<1,Vz€]0,1]}.

This set is open. Let f € A. Since [0,1] is closed and bounded, f attains its
maximum and minimum. Let

my = r[gilr]lf(fﬂ) = f(a) >0
M, = r[%%?f(x) =f(b) <1

This implies that 0 < my < f(z) < My < 1 for all z € [0,1].
Let € < min{my,1 — M3}.Then, if g € B(f), we have

O<mi—e<f(x)—e<gl@)<flz)+e<My+e<l.

Thus, g € A. So B.(f) C A and f is an interior point. Then, for all f € A, f is
an interior point and A is open.
On the other hand,

A={feC(0,1]) : 0< f(x) < 1}.

Note that if f,, € A, f,, = f then 0 < f(z) < 1. To verify, if 0 < f(x) < 1, let
fn(x) € A such that

- i f@)>1-3
fu(@)=q flz) if ;< fl@)<1-7
w i f(@) <]

Then, f, € A for all n. In particular,

1
n

ie.,
fn = [ € (C0,1]), || - [loc)-
So fe A ie, AC A'. So A is indeed the clousre of A.

15



Example 1.7.15. Consider
B={feC0,1] : 0< f(z) <z}
the set. This set is closed. What about its interior?

Definition 1.16. Let A C M in a metric space (M,d). We say that x is a
boundary point of A,
x € 0A = bound(A)

if every neighborhood of x intersects with both A and A¢. In other words, for
all € > 0, there exists z € A and y € A° with y,z € Be(z).

Remark. 0A = AN Ac = A\ A°.
Example 1.7.16. For the above example, we have

0A ={f e C]0,1] : Jx € [0,1] such that f(z) =0or f(z) =1}

Let
1-% fle)>1-7%
fe@)=qflx) < fla)<1-4
S f@)<$

Then, ||f — felloo = €/4 <, ie., fe € A with f. € B.(f). Furthermore,

B(f)NA“# @, B(f)NA# 2

1.8 Continuity

Definition 1.17. Suppose (M,d) and (N,p) are both metric spaces and f :
M — N is a function. We say [ is continuous at x € M if for all e > 0, there
exists § > 0 such that for all y € M wwth d(z,y) < §, we have p(f(x), f(y)) < e.
If f is continuous at every point x € M, we say f is continuous in M.

Theorem 1.10. The following are equivalent for any f: (M,d) — (N, p):
1. f is continuous on M
2. if xn = x in (M,d) then f(x,) = f(z) is (N, p)
3. whenever E C N s closed, f~Y(E) is closed in M
4. whenever V.C N is open, f=*(V) is open.

Proof. (1 = 2) For all € > 0, let § > 0 be such that p(f(z), f(y)) < € for all
x,y € M with d(z,y) < . Then, let Ny € N with d(z,x,) < d for all n > N.
So for all n > Ny, p(f(x), f(zn)) <e.

(2 = 3) Suppose E C N is closed and (z,)neny C f~1(E) and z, —
x € M (to show that z € f~1(E)). By (2), f(z,) — f(x). Since E is closed,
f(x) € E,ie, z € f7HE).
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(3 = 4) Let
J7HA) = {z e M| f(z) € A%}
— (v e M| f(z) € A}°

= (F71(4)"°
If V C N is open, V¢ is closed so f~1(V¢) is closed, implying that
V) =(F71v)°

is open.

(4 = 1) Let € > 0 and B(f(z)) € N. Then, f~!(V) is open in N,
containing x, implying that there exists § > 0 such that Bs(z) C f~1(V).
Then, for all y € Bs(x),

f(y) € Be(f(2)),
ie., d(y,z) < 4, implying that p(f(z), f(y)) < e. O

Example 1.8.1. Let M be any set with d be discrete metric. Let N be any
set and p be any metric. Consider a function f: M — N. Then, for V C N

fHV)={z e M| f(z) €V}
is open in M. So any function f is continuous.

Remark. If U C M is open,

fU)y={yeN :y=f(x),xecU}
may not be open.
Example 1.8.2. Consider f: R — R, where f(z) = 5.
Remark. If V is closed, f(V) may not be closed.

Example 1.8.3. Consider f: R — R with f(z) = e™® for V = [0,00). Then,
f(V) = (0,1].

Remark. Suppose f(x) =z on A =[-1,1], i.e,
f:-1,1 =R
Then, f is continuous on A but

1 ={zeA=[-11]: f(z) €(0,2)}
— (0,1]

Note that (0, 1] is open relative to A (subset topology).
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Definition 1.18. Let A C M be a metric space. We say that U C A is open
relative to A if there exists an open set V. C M with

U=AnV.

Similarly, W C A is closed relative to A if there exists a closed set Z C M with
W = ZnN A. The theore on continuity holds in subsets of M, using the concept
of relative topology.

Theorem 1.11. Let f : AC M — N. f is continuous on A if and only if for
all open set S C N , f=1(S) is open relative to A, if and only if for all closed
set T C N, f~X(T) is closed relative to A.

Example 1.8.4. Consider a function f : {5 — R where f(z) = x32.
we claim that f is continuous. Again, use |zz2| < ||z||2. So if z,y € £a,

p(f(@), () = [f(z) = F(Y)| = ws2 — yso| < ||z = ylls2 = d(z,9).

So for all € > 0, let § = e. Then, d(z,y) < ¢ implies that p(f(z), f(y)) < e.
Note that f is Lipschitz continuous.
Consider
A={x €ty : |x|32 <1}
={xely: -1< f(x)<1}
=7 (=11

Since [—1,1] is closed and f is continuousm f~!([—1,1]) = A is closed.

Example 1.8.5. Suppose f is continuous with f(0) > 0. Then does there exist
a such that f(z) > 0 for all z € (—a,a)?

Let € = f(a)/2 and consider § = (f(0) — ¢, f(0) + €). Since f is continuous,
f71(0) is open and contains 0. Therefore, there exists B,(0) C f~1() such that
f(x) € 6, meaning that

flz) = @ > 0.

1.9 Homeomorphism and Isometry

If f,g : (M,d) — R are continuous, so are cf, f + g, fg. So C(M,R), set
of continuous functions, is an algebra, a vector space but also closed under
multiplication. We’d like to define a norm on C(M,R), such as the sup-norm.
But is sup | f(x)] < o0?

We destinguish two special kinds of facts for such function:

f+(M,d) = (N, p).

Definition 1.19. f is a homeomorphism if f is continuous, one-to-one, con-
tinuous and f~1 is continuous.
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If f is a homeomorphism, the metric space (N, p) is essentually the same
as (M,d) for some open sets, consequently, homeomorphism is equivalent to
topological equivalent.

Definition 1.20. f is an isometry if p(f(x), f(y)) = d(z,y), i.e., distances are
preserved. The geometry of M and f(M) are the same.

1.10 Completeness

Definition 1.21. We say (X, )nen is a Cauchy sequence in (M,d) if for all
€ > 0, there exists N € N with

d(Tp, Tm) < €Vm,n > N.

Remark. In R a sequence is convergent if and only if it is Cauchy.

This property was the completeness of R. In any metric space, convergence
implies Cauchy: since z,, — =,

for all n,m > N.

Definition 1.22 (Completeness). We call (M,d) complete if every Cauchy se-
quence is convergent.

Example 1.10.1. R* is complete. If z,, = (2} ,22,...,2%) is a Cauchy

sequence in (R,usual Euclidean). But |2f — 2!, | < ||z, — 2] < € for all
n,m > N. Hence, each coordinate sequences (z%)nen, ¢ = 1,...,k is Cauchy.
So ¢, — z' for some x' € R. So candidate for the limit (z,,)nen is (z1, ..., 2%) €
RE. It is easy to show that

|lzn — x| — 0.
Example 1.10.2. (M, discrete) is complete. Cauchy sequences are eventually

convergent.

Example 1.10.3. Consider M = C([—1,1]) with

d(f.g) = / (@) — g(x)dr.

-1

For example, take

1 z>1/n
fa(z) = qlinear —1/n<z<1/n
-1 x<-—1/n

Then,
1 1

m n

d(fn; fm) =

is Cauchy. The limit is discontinuous. So this is not convergent because con-
vergence requires the limit to be in the set. So this space is incomplete.
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Example 1.10.4. /1, {5, ¢y and /., are complete. Let’s do
o0
ly = {x : Z‘J}j|2 < OO}
j=1
Take a sequence X,, = (X, (1), X,,(2),...), which is Cauchy in ¢5. For all € > 0,
there exists N € N such that || X,, — X,,[|2 < €/2 for all m,n > N. First, note
that

< HXn - Xm||2
<<
5
So for fixed k € N, (X,,(k))nen is Cauchy in R. So there exists
X(k) = lim X,(k)Vk € N
n—oo
Our candidate ofr the limit is
X =(X(1),X(2),...).

To show, we have to show that X,, — X in /5.
Verify that X € /o, for fixed k € N:

K K
S (@(k)? = Tim 3 (X (k)2 < X,
k=1 k=1
Since (X,,) is Cauchy, it is bounded (from 3A03). Then,
K
D (x(k)? <M
k=1

for any K € N. Take K — oo then
||IH%2 <M<oo = x €l
Next, verify that X,, — X in £o-norm. For all K fixed,

K K
DX (k) = Xn(B)P = lim Y[ X (k) = X (k)|
k=1 k=1

2

€
< 1 — 2 <« —
= mlg%o ||X7n XnHe2 < 4
for all n > N and all £ € N. Let K — oo,

62

1X = X, < S

for all n > N. So the convergence has been proved.

Theorem 1.12. If (M,d) is a complete metric space and A C M is closed,
then (A,d) is itself a complete metric space.

Corollary 1.4. cg is a complete metric space.
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1.11 Compactness

Theorem 1.13 (Bolzano-Weierstrass Theorem). In R with usual metric, any
bounded sequence contains a convergent subsequence.

Example 1.11.1. Consider M = {,. Let
x, = (0,0,...,1,0,...)
Then, d(z,, z,,) = 2 for all n # m. So there rae no Cauchy subsequences.

Example 1.11.2. Consider R™ with Euclidean metric. If X; € R", then X} =
(X}, ..., X}) is bounded by M and

IX7| < [|Xkll < M

for all k € N and for all j =1,2,...,n. So (Xi)keN is bounded in R for all j.
Then, thre exists a subsequence ki ,, with

X} L zt.
and there exists a subsequence k3 ,, of k1, such that
xi&nl —> xQ

and
1 1
xk2,m — T .

We continue. Then, there exists a subsequence k,, ,,, with the desired property:
X, =X/

for all 5. So

in Euclidean.
We will restrict to special subset of (M, d) to get this.

Definition 1.23. K C M is called sequentially compact if every sequence in
K contains a subsequence which converges to a point in K. If this holds for
K =M, we call M a sequentially compact metric space.

So we’ve just shown that a closed, bounded subset of R" is sequentially
compact. If K is closed and bounded in R, let (xx)reny be any sequence in
K, then (zj)reny bounded implies that there exists a convergent subsequence
xy, — x where z € M. If K is closed, then = € K.

Theorem 1.14 (Heine-Borel theorem). In R™, a set is sequentially compact iff
it 1s closed and bounded.
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Proposition 1.4. In any metric space, if K is sequentially compact, then K is
closed and bounded.

Proof. First, if (x,)nen is convergent, z, — x with z,, € K for all n, K is
sequentially compact implies that there is a subsequence that converges to =, €
K. Then, the whole sequence converges to x = x,. This holds for any convergent
sequences so K is closed.

Suppose K is unbounded. Let z; € K. Then, there exists x5 € K such that
d(x1,22) > 1. Also, there exists x5 € K such htat d(zq,23) > 1+ d(x1,z2).
Then,

d(l’g,l’g) 2 d(fﬂl,dg) — d(l’l,l’g) 2 1.

Then, there exists ¢4 € K such that d(z1,24) > d(z1,23) + 1. Then,
d(I2,$4) Z d(l‘h 334) — d($1,$2)
> d($1, 1'3) +1-— d(ﬂ?l,xg)
Z ]. —+ d(l’l,l'g) —+ ]. — d(xl,xg)
=2

implying that d(zs,z4) > 1. We can continue this and get a sequence such that
d(xp,xm) > 1 for all n # m , ie., with no Cauchy subsequence and hence no
convergent subsequence. This is a contradiction and K must be bounded. [

Definition 1.24. An open cover of a set A C M s a collection {Uy}uer of
open sets U, with

Ac U

acl

Example 1.11.3. If A is open, {{{ = A} is an open cover.

Example 1.11.4. Taking I = A, {U, = Bc(a)}aca is an open cover for any
€ > 0.

Definition 1.25. We say K C M is compact if every open cover of K contains
a finite subcover, i.e., if K C|JU,, then there exists a1, as,...,an with

K CUy, U+ Ulyy,
Note that the subcover is a finite colllection from the original collection.

Example 1.11.5. Consider M = R equipped with the usual metric. Consider

A =(0,1]. Let
1 1
u"_<°‘_10’0‘+10>’

where a € (0, 1], is an open cover. Then, Uy /10,Ua )10, - - - U s a finite subcover.
However, A is not compact. Consider V,, = (a/2,2). Then, this doesn’t
have a finite subcoer. Let
Vays-++sVay)
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be any finite subcover. Then,

inf(Va1U~-~UVaN):%>O.

Then, (0, a1/2] is not conatined within the collection so (0, 1] is not compact.
Theorem 1.15. In any (M,d), K is compact iff K is sequentially compact.

Proof. First, assume that K is (covering) compact. (Lemma 1) if F¥ C K is
closed, K is closed then F is compact. Let {U,}acr be any open cover of F.
Then, {Uy tacr U{F} is an open cover of K. Then, K is compact implies that

Uy, U---UU,, UF®

covers K and
Upy U Uy,

covers K.

Now assume (X,,) is a sequence in K with no convergent subsequences. Let
F ={X, : n € N}. Then, F has infinitely many elements and no limit points.
So F' is closed and F' is compact.

Since F' has no limit point, for all y, € F, there exists ¢, > 0 such tht
B., (yn) contains F other than y, itself. {B, (ym)} is an open cover that has
finite subcover. This is a contradiction. O

Definition 1.26. We say a set A is totally bounded if Ve > 0, there exists finite
colection X1,...,X, € A with

AC Be(z1)U---UB(xn)

This is like compactness but for the special class of open cover by balls of fixed
radius.

Remark. We proved that if A is totally bounded then any sequence must have
a convergent subsequence. If A is closed, then A is sequentially compact.

Proposition 1.5. Assume K is sequentially compact. Then, K is totally
bounded.

Proof. Suppose no. Then, there exists € > 0 for which a finite collection of balls
can not cover K. Take y; € K then B.(y1) does not cover K. In other words,
there exists y2 € K \ Be(y1). So d(y2,y1) > €. Now, {B.(y1), Bc(y2)} does not
cover K. So we can define a ball around y3 again.

Continued, we get a sequence (yp)nen C K, where

d(Yn, Ym) > €
with no convergent subsequences. O
We are ready to show that K sequentially compact implies K covering com-

pact. Assume K is sequentially compact and {U, } is an open cover.

23



Lemma 1.3. There exists v > 0 such that for all y € K, there exists a € 1
with By (y) CUy.

Proof. If not, then for all » = 1/n, there exists y, € K such that By, (y,)
is not contained in any U,. K sequentially compact implies that there exists
subsequence y,,; — yo € K but {Un}aer covers K so there exists ag with
Yo € Uy, Choose € > 0 with Be(yo) € Uy, but ym; — yo. So there exists 7 € N
such that ym,; € Bej2(yo) for all j > 7. As d(ym,y) < €/2 and as for j large
enough, 1/n < ¢/2. Therefore,

Bl/mj (ym]) c Be(yO) c Z/{ao
This is a contradiction. O

To complete the proof of the theorem, let » > 0 be as in the above lemma
and apply the proposition: there exists yi,...,yn € K such that

K C B(y1)U---UBr(yn)
By the above lemma, Vj = 1,..., N, there exists a; such that
B, (y) CUs, = K C Uy U---UUqy

So we have shown that

1. If K is compact then K is sequentially compact

2. If K is sequentially compact then K is totally bounded

3. If K is sequentially compact and totally bounded then K is compact
Example 1.11.6. Show that

{z € o] |x(k)| < 1/k}

is compact.

Theorem 1.16. If f : M — N is continuous and K C M is compact, then
f(K) is compact in N.

Proof. Let {U,} be an open cover of f(K),

FE) € | Ua,

ael
i.e., for all z € K, there exists a, € i such that f(z) € Uy, iff
S f_l(uocm)

for some a, € I. Then,

KC U

acl
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is an open cover of K. So K is compact implies that there exists a finite subcover
of K. So
K C f_l(ual) Uu---u f_l(uazv)

Soforall z € K, x € f~(Uy,) for some j iff f(z) € Uy, iff

FK) CUpy U+ Uldyy,
a finite subcover. O

Corollary 1.5. If f is continuous and K is compact, then f(K) is bounded.
In particular, if f : K C M — R is continuous, there exists R > 0 such that
|f(z)] <R forallz e K.

Theorem 1.17. Suppose f: M — R is continuous, K C M comapct. Then, f
attains its maximum and minimum value on K, i.e., there exists x, and x* in

K such that f(x,) =inf f(x) and f(z*) = sup f(x)

Proof. Let S = sup f(z) < oo by corollary. By definition of supremum, there
exists a sequence z, € K, f(z,) — S. Since K ois compact, there exists a
subseeunce and z* € K such taht z,, — x*. Since f is continuous, f(x,,) —

fl@r) =5, O
Recall the definition of uniform continuity.

Definition 1.27. f is uniformly continuous on S C M if Ve > 0, there exists
0 > 0s uch that for all x,y € S, d(x,y) < 0 implies p(f(x), f(y)) <€

Theorem 1.18. Let K C M be compact. Then, if f is continuous on K, f is
uniformly continuos on K

Example 1.11.7. Consider
K ={z e lo|[z(k)|] < 1/k}

This set is compact. Show that this set is sequentially compact and show that
is closed and totally bounded.
Note that for z € K,

=1
|7, < Z 72 < oo
k=1

For all € > 0 there exists N such that

=1
Zﬁ<e.

N+1

Let gn : RN — 5. This is continuous. Note that

Ay ={zeRY : |z, < —,n=1,...,N}



is compact. Then, gn(A,) = kn is compact. For z € K, denote
e = (2(1),2(2),...,2(N),0,0,...)

so that ™) € ky C 4y is compact. Then, there exists z1,...,2,, € Ky such
that

kn C U Beja(z;).
j=1

Then, d(z, ™)) < €/2. So
K C | Be(x)
i=1

and K is totally bounded.
On the other hand, we can use a diagonal argument.

Theorem 1.19. Let K C M be compact. Then, if f is continuous on K then
f is uniformly continuous on K

Proof. Recall the definition of uniform continuity: for all € > 0, there exists
0 > 0 so that Va,y, inS such that d(z,y) < d implies p(f(z), f(y)) < e. For any
€ > 0 and Vx € K, there exists §(x) > 0 so that if y € K, d(z,y) < é(x) then
p(f(z), f(y)) < €/2. Consider U, = B@(x), where x € K. Then {U,}recx is

an open cover of K. Because K is compact, there exists a finite subcover
K CUy, U---Uldyy.

Let 6§ = 2(8(x1),...,0(zn)) > 0 as there are finitely many terms. Let z,y € K
such that d(x,y) € . Since x € K, we have

T €U, = Bs (:L'])
3

for some j € {1,2,...,N}. Since d(z,y) < § < $6(x;), then y € Bs(,)(;).
Since

d(y,z;) < d(y,z) +d(z,x;)
<§+

6(z;)
2 2

Therefore,
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2 Space of continuous functions

2.1 Sets of functions

The simplest set of function is C(X,y), the class of continuous functions f :
(X,d) — (Y, p). First, we recall some important notion of convergence.

Definition 2.1. Let f,, : X — Y be any sequence of functions and f: X — Y.
We say that fr, — [ pointwise on X if fr(x) — f(x) for each fized x € X, i.c.,
for all x € X, for all € > 0 there exists N € N with p(f(z), fu(x)) < € for all
n > N.

Example 2.1.1. Consider f, : R — R defined as

-1 z<—1
fu(x) = nx —%<x<%
1 xZ%.
Then,
-1 <0
falx) = flz)=<0 2=0
1 x> 0.

Note that f, are continuous but the limit is not.

We see that pointwise limit doesn’t give a good notion of convergence. The
proper convergence in uniform convergence, derived from supremum norm.

Definition 2.2. f,, — f uniformly on X if Ve > 0 there exists N € N such that
p(fu(x), f(x)) <€ for alln > N and Vo € X.

Theorem 2.1. If (fu)neny € C(M,N) and fn, — [ uniformly on M then
feC(M,N).

Proof. Let € > 0. Choose m € N such that p(fnm(x), f(x)) < €/3 for all x € M
(by uniform convergence). Since f, is continuous, for all z € M, there exists
d(z) > 0 such that if y € M then d(z,y) < § implies p(fn (), fm(y)) < €/3. By
the triangle inequality,

p(f (@), f(y) < p(f(2), fmn () + p(fm(2), fm (1) + p(fin(y), [ (y)
<ztsts

O

So pointwise does not preserve continuity but uniform convergence does. So
the notion of uniform convergence is a good metric for (M, N).
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Now, let’s get back to (C([—1,1]), ]| - ||oo)- We claim that this is complete.
To show this, take a Cauchy sequence and show that in converges in general in
our space.

Consider || fim — fnlloo < € for all n,m > N € N. Then,

Supze[—l,l]Hfm — [alls <.

So for all z € [-1,1], |fm — ful < e Given a fixed 29 € [—1,1], |fm(z0) —
fn(zo)| < € is Cauchy, i.e., {fn(20)}nen is Cauchy. Since R is complete,

fn(@o) = f(w0)

for some f(xg) € R. Hence, our sequence f,(xg) — f(xzo) converges pointise.
We now need to show that f(x) is continuous and that f, — f in || - | -
Since Yz € [—1, 1], we have

|fn(z) = fn ()] = W}gnoo | fn(2) = fin ()]

By our definition then, |f,(z) — f(z)| < € for all  and for all n > N, since {f,}
is Cauchy. So
sup [ fn(z) = f(2)] <€
z€[—1,1]
for alln > N. So f,, — f in sup-norm.
Since f, — f in sup-norm, it’s uniform. By our previous theorem, f is
continuous.

Remark. We can generalize to see that (C([a,b]), ] - ||s) is complete.

The question is whether we can generalize function so that we can have
C(M,N);,

We have f, — f uniformly if and only if for all ¢ > 0 there exists N € N
such that

sup p(fn, f) <€

for all n > N. So this could define a distance on C (M, N) but we have to be
careful.

Example 2.1.2. Consider f,g: R — R where f(x) =z and g(z) = 0. Then,

So we don’t have finite distance.

Hence, we need to just have our functions to be (1) bounded or (2) our space
has to be compact.

First, consider (M, d) to be a compact space. Then, f :— (N, p) is bounded if
f is continuous, For example, for N = R, we may define || f||oc = sup |f(x)] < oo
when M is compact.

Second, we can restrict to Cp(M, N).
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Theorem 2.2.

e The space of bounded continuous functions is complete with ||- || provided
that N is complete.

e C(M,N) is complete under the sup-norm provided that M is compact and
N is complete.

Example 2.1.3. Consider

nT
1+ n222

[()

Note that fy,(z) is maximized when z = 1/n and we have f,(z) =1/2. So

n T

fn(z) = ﬁm

and converges pointwise to 0. So f, — 0.

If f, converges to a pointwise limit, does it also converge uniformly? Note
that uniform convergence implies pointwise convergence (prove this) but not
necessarily otherwise.

If we take (0,1], then f,, — 0 So consider [§, 1] for 6 > 0. Note that

N§ 1 )

INO) = e = N

So choose N such that f,(0) < € for all n > N. Since fx(d) is max, we have
uniform convergence on [4, 1].

Example 2.1.4. Consider

We can rewrite it as

=2 ()

and so f, — 0 for z = 0 but f, — 1 for any other x. Since our limit is not
continuous, we don’t have uniform convergence on [0, 1]. However, we do have
uniform convergence on [§, 1] for all § > 0.

We need to show that || f,, — 1]jec < € for all n > N. Since f, is increasing,
difference is biggest at §. So pick N so that |fx(§) —1| < € and we have uniform
convergence for all z € [§, 1].

We have two important consequences of uniform convergence.

Theorem 2.3. Suppose f, are continuous on [a,b] C R and f,, — [ uniformly.

Then,
b

b
lim fn(x)dx:/ f(z)dx.

n—oo a
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Proof.

< |b—alsup|fn — f|

€
<'b‘a'<|b—a|)

/ab fn(x)dz — /ab f(z)dz

Example 2.1.5. Pointwise limit is not enough for the above. Consider a func-
tion that looks like a triangle which takes a value of 2,, at x = 27" and there
are straight lines from this point to z = 0 and x = 2~ (=1, Then,

/ab fnlz)de — /ab f(z)dx

Therefore,

< €.

O

! 1
/ fo(z)de = Z2m2" "1 =1
0 2

for all n. But the pointwise limit is f(z) = 0 and [0 # 1. So we don’t have
uniform convergence and have a problem.

2.2 Integration and differentiation

We need to review Riemann integral:

e If f: [a,b] — R is continuous, f is Rieman integrable also if f is piecewise
continuous and bounded

e If f, g are Riemann integrable, f < g, then for all € [a, ] then ff fdr <
ff gdz. In particular, if they are bounded, ie., |f| < M then we have

| [ f@dsl < [ 1f@)ds <2116~ a)
e If f is continuous on [a, b] then for ¢ € [a,b],

Pla) = / " fyat

is C1([a,b]) and F'(z) = f(x) with F(c) = 0. This is also referred to a
the fundamental theorem of calculus.

e Integral of a sum is the sum of integrals

e We can split up integrals

Example 2.2.1. Here are some useful limits that can be proven using L’Hopital:
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o nl/m 1

o tY/" = 1forallt>0

o (1+t/n)" — et forall t

e n?/(1+t)" = 0forallpeR

Example 2.2.2. Show that fl_l/n

b fn— fol f if f = f uniformly on [0, 1].

Proof. Observe that

/Ol_i fn(x)dx — /01 f(x)dx

[ s - | f(@)da

Note that
-1 1
/ fn(x)dx = / fn(x)i/)[(), 1—1/n](x)dx
0 0
where
1 A
Ya(r) = {0 i; A
Then,

<[ T - sl [ s

€ 1
<5+ (1-7)

<€

[ @ s~ | f()da

for large enough n. O

Note that uniform convergence isn’t enough to interchange limits of integra-
tion if the domin is unbounded. For example, consider a function which is 0 ev-
erywhere but has a straight line from (n, 0) to (2n,1/n) to (3n,0). Then, f,, — 0
uniformly. Indeed for all € > 0 we can choose N so that || fy|lcoc = 1/N < € by
construction. However,

So

So our theorem from before depend on our interval being compact. What
about differentiation? Is it enough to have uniform convergence?
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Example 2.2.3. Consider

fnlz) = € sin(nz) — 0.

N

Then,
f1(x) = v/ cos(nz)

does not even converge pointwise. So we need more.

Theorem 2.4. Suppose f, € C([a,b]) such that g : [a,b] — R with f, — g
uniformly on [a,b] and there exists xo € [a,b] and yo € R such that f,(z0) — Yo
such that f,(xvo) — yo. Then, there exists f € C'a,b] such that f, — f
uniformly and ' = g.

Proof. By fundamental theorem of calculus,
£ole) = fulwa) + [ (0
zo
For any fixed z € [a,b), we may define

lim 1, (e) =0+ [ " gyt = ()

By F.T.C., f/(x) = g(z) is continuous since f, is continuous and f] — g

uniformly. So f € C*([a, b]).
Note that yo = f(xo). It remains to show that f,, — f uniformly. Note that

[f (@) = fnl2)] =

w0~ fuleo) + [ (alt) - fw))dt\

Zo

<l ~ futeo) + [ “lot) — £ (0)lde

So for all € > 0, there exists N such that Vn > N, both
€

| fn(20) — yo| < 5

and

for all ¢ € [a,b]. Therefore, for all n > N,

€ b €
| fu(z) — f(2)] < §+/a mdt:e'

In other words, || fn — flloo — 0. O
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2.3 Weierstrass approximation theorem

For images in vector spaces N, we may define uniform convergence of series.

Definition 2.3 (Uniform convergence of series). f(z) =Y ", fn(z) converges
uniformly on M if the partial sums, S, (z) = >.}_, fu(z) converges uniformly
on M.

Theorem 2.5 (Weierstrass M-test). Suppose (fn)nen in (C(M,N),sup) are
bounded functions, f, : M — N and N is complete normed vector space. Let
M, = |follo- If vy My, < 00, then >~ fn converges uniformly on M.

Proof. Define the partial sum S,,(z) = Y ,_; fr(z). Then,

n

”Sn_SmHoo:” Z kaS Z ||fk||oc

k=m+1 k=m+1

And since Y7, [[frlloo < 00, we have for all € > 0, there exists N € N with

n

190 = Smlloe < D il <€

k=m+1

for all n,m > N. So (Sp)nen is cauchy in sup-norm. Since N is complete,
Sp = > p_y [x is convergent in sup-norm. O

Corollary 2.1. If each f, is continuous M compact or if each f, € Cp(M,N),
N complete, then if " || falloo < 00 then f =" f, is continuous.

Corollary 2.2. If each f, is Riemann integrable on [a,b] then f is Riemann

integrable and
b o0 b
/ fdxr = Z fr(z)da.
a

k=179
Corollary 2.3. If each f, € Cta,b] and > 1° fl converges uniformly on [a,b]
and Y 7° fn(x) is convergent, then f'(x) = > 1" f'(x) and f € C'a,b].

Application of Weierstrass M-test is a function which is everywhere contin-
uous and nowhere differentiable. Start with g : R — R where g(x) = |z| for
—1 <z <1 and g(z) = g(x — 2) otherwise. Then, g is continuous on R and
2-periodic. Also |g(z) — g(y)| < |x — y|. Define

Fla) = i e

Since ||gk(2) [0 < (3/4)% over R and Y ;- (3/4)* converges, so by Weierstrass
M-test, the series converges uniformly on R. Therefore, f is continuous on R.

33



Take any € R. Let n € N and choose 6,, = j:%4_m with sign chosen so
that there are no integers between 4"z and 4" (z + §,,) = 4™ £ 1/2. With this
choice of §,,, we will look at

lim f($+5n)—f(l‘)

n— 00 On,

If it convergnes, it will tend to f’(x).
Observe that

0 iftk>n
’g(4k(m+5n)) —g(4ka:)| = % ifk=n
< |4F8,| if k < n by g lipsitchiz
Next,
f@+062) = f(@) _ <= (3)" (9" (@ +3,)) — g(4¥a)
On 4 On
k=0
3\" 3 3\ (g4 (@ +6,)) — g(4Fw)
=+ (= 2 Z i
(1) =20 ()
3’!1.
where .
iy 3)’“ (g<4k<x +60)) = g<4kx>>’
—\4 On
n—1
3% |4%6,,|
< =
<2 F )
n—1
= Z 3k
k=0
3’n
<.
- 2
So

fle+6n) = fl@) _ 0 3" 3"
>3n - = .
5. >3 5 5 — 00

So f'(x) does not exist, i.e., f is not differentiable at any = € R.

Theorem 2.6 (The Weierstrass approximation theorem). For any continuous
function f : [a,b] — R, there exists a sequence p,(x) of polynomials with p, — f
unifomrly on [a,b]. In other words, the class of all polynomials is a dense set
in C([a,b]) with sup-norm. We say that (Cla,b], | - ||eo) is separable since there
s a countable dense subset.

Corollary 2.4. C*([a,b]) is dense in C[a,].
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In the text, a proof is given involving a special family of polynomials, the
Berstein polynomials:

- k\ [n e
B =21 (5) ()t -or
n k
k=0
where n € N. The proof we will use is based on the idea of an approximatioin
to the identity. We introduce a special sequence of polynomials:

Qn(t)=C,(1 —t3)", te[-1,1]

where C,, = 1/ (fil(l - t2)”dt) so that

1
/ Qn(t)dt = 1.
-1

To estimate the magnitutde of C,,, we compute

1 1
/iu—ﬁwﬁ:Q/Xl—ﬁwﬁ
-1 0
o
22/‘ (1 —t*)"dt
0

1\" 1
>2(1-=) —
=2(0)
Or use binomials and use the fact that: (1 —¢2)" > 1 — nt2. Then, C,, < cy/n
for some ¢ > e/2. So

0 < @Qn(t) <ev/n(l—13)".
If1 >t >d >0, then
0 < Qn(t) < ev/n(1—6%)"

So @y (t) — 0 uniformly in {¢t € [-1,1] : |¢| >} Since

/21 Qult) =1,

this means that @, (0) — oo. We call any family of

Inutitively, @,, — &g, the Dirac delta. It concentrates all the area under the
graph in a neighbordhoof of t = 0 as n — oo.

We now reduce the problem a little. First, we may assume that [a, b] = [0, 1].
If not, consider g(z) = f(z — a)/(b — a), which is continuous on [0,1]. Next,
assume f(0) =0 = f(1). If not, let



If lpn — glloo <€, then

[P+ £(0) + 2(f(1) = f(0)) = f(@)]oo <€

and p, + f(0) + z(f(1) — f(0)) is also a polynomial. The advantage is that we
can extend f : R — R by letting f(z) = 0if x < 0 and z > 1 and f is still
continuous on R.

Recall the definition of uniform continuity: for all € > 0, there exists § > 0
such that for all z,y with |z — y| < & we have |f(z) — f(y)| <e.

Lemma 2.1. f is uniformly continuous on R.

Proof. We proved any continuous function on a closed bounded interval is uni-
formly continuous. The constant f(z) = 0 is uniformly continuous on [0, 1]¢ so
f is uniformly continuous on R since if |z —y| < § > 1, then z,y € [-1,2] or
obth z,y € R\ [0,1] and f is uniformly continuous on [—1, 2]. O

Define on [0, 1],
Po(x) = / @+ 0Qu(0t

By a change of variable, s = t+x and f(s) =0if s ¢ [0,1], i.e.,, —z <t < 1—ux,
so we have

11—z
Po(x) = / F(@+ £)Qu (1)t

1
- / F(5)Quls — w)de
Note P, (z) is a polynomial.
Qun(s —z) =cp(1— (s —x)H)"
= q2n(8)2%" + qan—1(8)2*" " + - + qo(s)

is a polynomial in z with coefficients. Therefore,

R = [ 1 Fan(o)ts| a2 o | 1 ene

We must show that p,(z) — f(z) uniformly on [0, 1]. We will need

e For all € > 0, there exists 6 > 0 such that Vo € [0,1], with |z —y| < § =

[f(@) = f(y)] <e/2
e Also, f is bounded so there exists M > 0 such that |f(x)| < MVx € [0,1].

e @, — 0 uniformly on 45 = [—1,1] \ [-4, 0], i.e., there exists N € N with
|Qn(t)] < €/(8M) for all n > N and for all ¢t € As.
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Then,
|f(z) — Po(x)| = ’f(:v) /_11 Qn(t)dt — /_11 fla +t)Qn(t)dt‘
B ’/11(““”) —fla+ t))Qn(t)dt‘

Now, we divide the integral into 2 pieces:

)
/ (F(2) — F(x+1)Qu(t)dt

-5

and we use uniform continuity.
Since z+t =y, | —y| = | — (x +t)| = |t| < 4. So the integral is less than

€

5 1
€ €
i < = I
2/_6Qn(t)dt— 2/_1Qn(t)dt 5
Also,

/As(f(:c) - f(x—i—t))Qn(t)dt’ < zMSLM | 1t < g

Therefore, | f(x) — P, (z)| < € for all € [0,1] for allm > N. So P, (x) uniformly
converges on [0, 1].

Example 2.3.1. Consider f,g with same moment then f = g, i.e.,
b b
[ ani@ = [ agta)
for all n.

Example 2.3.2. If f € C([a,b]) and f:x”f(a:)dx = 0 for all n € N then
flz)=0.

Proof. There exists p,, such that p, — f (Weirstrass). Hypothesis: fab pnfdr =

0 for every polynomial. Since p, — f, we have f; f?dxr = 0 and since f? > 0,
we have f = 0. O

On the proof of Weirstrass, here’s what we have actually proven:

1. If we have a family @, (z) that is integrable function with the property
that

e Qu(s)>0forallseR
o [Qu(s)ds=1
e V6 >0,let As =R\ (—4,9), then

lim Ap(s)ds=0

n— oo A5
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Note that we chose @,, to be polynomial but it doensn’t have to be.

2. Suppose f is uniformly bounded on S C R and uniformly continuous on
S, varnishing outside of S. Then,

Af@@dwﬂww%f

uniformly as n — oc.
Example 2.3.3. Consider

1
VAt

—v?/(4t)

Gi(y) =

where ¢ > 0. This is analogous to @Q,, with n = 1/t. Ast — 07, G; — oo. Then,
e (G; > 0 because this is exponential
° f Gyds = 1 because G is normal distribution function
e Away from the origin for our integral goes to 0
So
u(e.t) = [ Gile = 5)f(@)ds = f(z)
for all f uniformly continuos, uniformly bounded on R. But,

d d?
%Gt(x) =73

holds for all ¢ > 0 and for all z € R. So u(z,y) solves the heat equation with
initla conditions given by f(x).

Example 2.3.4. Consider

1

1
BO=2 oy

Now, n = 1/y. Asy — 07, n — oo. Checking conditions is left to the readers
as an exercise. Then,

M%M=AH@—@ﬂWk%ﬂm

for f uniformly bounded, uniformly continuous. Hence,

d? d?
— P, —P, =
2 Pyl@) + G Pyla) =0

for y > 0 so u(x,y) solves the Laplacian and is a Harmonic extension of f to
the upper half plane.
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Suppose f(x,y) is continuous on [a, b] X [¢,d] = R and f(x,-) is differentiable
on [c,d] and f, is continuous on R. Then,

b

is C! and obtained by
b
F; = / fy(z,y)de.

We will study

F(y+h) - F(y) :/l’ fy+h)—fl@y)
. h

h

We need uniform convergence of w for fy(x,y). By MUT, consider
fy(z, @) for y < ¢ < y+ h. Then, f,(x,¢) is uniformly continuous in ¢, i.e., for
all € > 0, there exists § > 0 such that

|fy(z,2) = fy(z,y)] <€

if |z —y| < 0. So
|fy($»¢)_fy($vy)‘ <e€

uniformly. So we have uniform convergence of f,(x,¢) to f,(x,y).

2.4 Equicontinuity

In any metric space, compactness implies closed and bounded. However, this is
not always the case in general.

Example 2.4.1. Consider C([a,b]) and f,(z) = sin(nz) where n € N. Then,
I fnlloc = 1 so a bounded sequence but it does not have a uniformly convergent
subsequence.

Definition 2.4. Let A C M where M is a metric space with metric d. Then,
a subset F C C(A) is called equicontinuous if for all e > 0, there exists § > 0
such that | f(x) — f(y)| < € for all z,y € A with d(x,y) < for all f € F.

So an equicontinuous family is one with uniformly continuous functions f
and ¢ that works for every f given € > 0., i.e., all functions are uniform over
the domain.

Example 2.4.2. Consider

Fy={f e CA|f(x) = f(y)| < Ld(z,y)Vz,y € A}

All f € F, are Lipschitz with same constant L. If we had f, differentiable and
uniformly bound in A C R, then f € Fy for A C R by Mean Value Theorem.
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Theorem 2.7. Let K C (M,d) be compact and F C C(K) be a bounded and
equicontinuous set. Then, only sequence {f,} € F contains a uniformly con-
vergent subsequence.

Proof. Since F is equicontinuous, for all € > 0, there exists § > 0 such that
|f(z) — f(y)] <¢/3 for all x,y € K so that d(x,y) < and Vf € F.
Consider the open covering { Bs(z)|x € K}. Since K is compact, there exists

a finite subcover:
N

K C | Bs(a)
i=1
for a finite collection z1,...,zy € K.
Take a sequence {f,} of functions in F. By hypothesis, they are bounded.
So there exists B > 0 such that |f,| < B for all n and for all .
Look at only 1, ...,zn. Then, |f,(z;)|nen is a bounded sequence in R, or

{(fa(z1), .o, fulzn)}

is a bounded sequence in RY. By Bolzano Weierstrass, there exists subsequence
so that ny for which a sequence of vectors converges, i.e.,

fnk(x]) — Yj

inRforall j=1,...,N. So f,,(x;) is Cauchy. So there exists Ky € N so that

[P (@) = funla)] < 3

forall K,l> Ky forallj=1,...,N.
Take any € K. Since K is compact, there exists j so that « € Bs(x;) and
since f is equicontinuous,

€
| frr () = frp(25)] < 3
for all k € N. Then,

|fnk(x) - fn,(l')‘ < |fnk($) - fnk(x])| + ‘fnk(x.]) - fnk(‘rj” + |fnl(xj) - fm(x”
€ € €
< g + § + g
=e
So {fn, } is a Cauchy sequence in C(K). Since C(K) is complete, f,, converges
unifromly to f for some f. O

Corollary 2.5. If F € C(K) is closed, bounded and continuous, then F is
compact in C(K).

Theorem 2.8. Suppose F C C(X) is compact. Then, F is equicontinuous.
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Proof. Since f is compact, we can cover it with finitely many B, /3(f;) for i €
[1,n]. Hence,
N

F < UBs(fi)-
1

This is equivalent to the fact that for all f € F, there exists f; where i € [1, N]
for which ||f — fi|loo < €/3. Since each f; is continuous and K is compact, we
know each f; are uniformly continuous on K. That is, for all € > 0, there exists
d; > 0 such that if z,y € K then d(z,y) < J; and |f;(x) — fi(y)| < €/3.

Let 6 = min;ep n1(d;) > 0 so if d(z,y) < 6 then for all f; we have |f;(z) —
fi(y)| < ¢/3 for all i. So for any f € F choose f; with B, 3(f;) then for all
z,y € K and d(z,y) < §, we want |f(z) — f(y)| < e. So

[f(@) = f)l=---=e

and F is equicontinuous. O

2.5 Application of Arzela-Asccli

We want to approximation solution to ODE. Suppose f : I € R?2 — R is
continuous. We seek a solution to z/(t) = f(z(t),t) with 2(0) = zo.

Euler’s method

We want to discretize the equations. Let n € N and dt = I/n, the step size.
Consider only the values tx = Két = KI/n for K = 1,...,n. Then, Euler’s
approximation to solution is to solve

LT — Tp—1

Az = f(@p—1,tp-1),

le, xp = xp_1 + Atf(Tr_1,tp—1)-

Suppose At — 0. Does this converge to our IVP? The actual solution is a
function: so for each n € N, we define a linear function ¢(™ (t) defined iteratively
by ¢ (0) = xo and

o™ () = w1 + fan—1, 2(te))(t — tr)

for tp_1 <t < ty.

Clearly, ¢(™) is linear at each (t;_1, ;) and continuous on [0, T] and ¢(™) (t) =
zr. We want to know if {¢(™} converges to solution z(t).

Assume f is continuous. Then, there exists R = (—t4,t) X (a x b) with
(0,79) € R and f is continuous on R. Since R is closed and f is continuous, f
is bounded so there exists M > 0 such that |f(¢,z)| < M for all t € R.

Since f is bounded, z’'(t) is bounded, by our construction of the ODE;
|2’ (t)] < M. This defines a compact region W C R so that

W= {(t,2)|lx — zo| < Mt,0 <t < T}

41



where T' = min(Ty, (b — x0)/n).
Then,
M (t) = wx1 + flan—1, o(te))(t — i)

defines our approximate solution to our IVP for t;_1 < t < t; where
T = Tp—1 + Atf(ap_1,tr-1)

with At = T'/n < min(d,5/M) for all n > N and § chosen so that by uniform
continuity on W we have

€
t) — R
7, 0)— F,9)| < o

for all (x,t), (y,s) € W and |z —y| < d and |s — | < 4.
Note then from defintion of ¢(™ (t), we have for all € > 0,

9 (1) = 6™ (8)] = | f(@r—1, ti—1)(t = 9)|

so we have |¢(™) (t) — ¢(™)(s)| < M|t —s|. So ¢(™)(t) is Lipschitz and so {¢(™ (t)}
is equicontinuous for all ¢, s € [0,T]. Also ¢(™)(0) = x by construction. Hence,
|p(™) (t) — 20| < Mt for all t € [0, T).

So we can use Arzela-Asccli so we have a subsequence n; and a function ¢
which is continuous on [0, 7] with the property of uniform convergence: ¢(%) —
¢ on [0,T]. Since ¢(™(0) = z¢ for all n, ¢™i (0) = z for all n;. THerefore, we
found a function satisfying ¢(0) = zo.

Moreover, we can infer that there exists J € N such that [¢™7 (t) — ¢ ()| < €/4
for all ¢t € [0, T7.

Hopefully, ¢ solves z'(t) = f(x(t),t) with (0) = xg. By construction,

d

£¢(")(t) = f(@k—1,tk-1)

for all t € (tx—1,tx) and

1
6V () = wra| < Mt =t | < M7 =6

for all t € (tx—1,tr). So we have

d n n n 3
00 ) = FM (6 @), 0)] = |f (wk, teo1) — F(@" (1), 1)]
i.e.,
£
2T
We know ¢(™)(t) is continuous and piecewise differentiable, so we can use
the fundamental theorem of calculus:

o) (t) = (™) (0) + /Ot (jsqﬁ("”(é’)) ds

|f(xkatk—1) - f(¢n(t)at)| <
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for all t € [0, T]. Hence,
CUo-l—/f —[#™(0 / — " (s ds+/f
< Jo(t) — 6" (1) ww/ £ (5),5))ds
H/f¢% SO0 (s))ds

<1+1+1+1

— €

(ﬂ:m+AfWU )d

so ¢ is C and L¢(t) = f(¢(t),t) with ¢(0) = zo. So ¢(t) solves the IVP.
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3 Application: Fourier Series

3.1 Fourier Series

Fourier series is about approximation of function, but by trigonometric polyno-
mial. The natrual norm is not supremum but the L?-norm. Take C([—m,n])

and define the norm
1 1/2
1= (5 | (Par)

This norm is special in that it is associated to an inner product:

(o)== [ )

™

with || f|l2 = /{f, f). Our special class of f will be the trigonometric polyno-
mials.

Call

k=1

Tn = {T(x) = % + Z (ay, cos kx + by sin kx)}

and

r=Um
n

Then, each 7, is a linear subspace of C'([—m,n]). A calculation reveals that the
building blocks:

¢am{f”” $21 0 (@) = sinks

form an orthogonal family in L?-inner product. Then,

(Dr, V) = 0 = (dr, d5) = (Vr,V5)

provided that k # j. Furthermore,

(O, or) = %/W (cos kxz)%dr = 1 /Tr %(1 + cos 2kx)dx =1

—T —Tr

However, note that (1,1) = 2.
Given a Riemann integrable f, we get an element of 7,, by orthogonal pro-
jection. Let

ag = <f7¢0>
ap = <fa¢k>
bk = <f7wk>
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and

Sn(f) = % + Z(ak cos kx + by sin kx)
k=1

the n-th Fourier sum. S,(f) € 7, where n € N. As 7, are linear subspaces
and this is obtained by orthogonal projection, we expect this to be the best
approximation of f in 7,.

Note that Sy, (f)(x) = Sn(f)(x + 27) for all n € N. So S,,(f) is continuous
and 27-periodic. We write g € C?™ for g : R — R that is continuous and
2m-periodic.

We want to compare f with S, (f) so we will restrict to f € C?". You can
also think of f € C([—n,7]) as an element of C*™ by periodic extension of f to
R. Note that this may crease discontinuity in f and of f’ at multiples of 7. So
we can think of the Fourier series as a 2 — 7 periodic continuous extensions of

f
IfT e, then f—S, LT, ie.,

(f =5Su(f),T)=0
for all T € 7,,. In deed, write this as
T(x) = ardr, + Bribw

then

(f=Sn(f), ardr+Brr) = ar(f, or)+B(f, Yr) —ar(Sn(f), o) —Br(Sn(f), Yr),

where

ag = <f7 ¢k> = <Sn(f)’¢k>

and so the entire thing goes to zero.
As the inner product is linear, this works for all T' € 7,,.

Proposition 3.1. For all f € C*™, and for alln € N,
1f = Sn(DI < lf = Tl]2VT €
and equality holds iff T = S, (f).
Proof. Let T € 1,,. Then,
f=T=(f=5(f)+ (Su(f) = T)
Then, by Pythagorean,
If =TI3 = 1f = Su(HIZ+ 19.(f) = TIZ = If = Sul£)3
and equality holds iff T' = S, (f). O
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3.2 Parseval’s identity

Next, we will calculate the error in the approximation by S, (f):

1f = Sa(AIF = (f - n(f) ( )>
(

= (f = Sulf), Sn(f), Sn(f))
= [I£15 - % bo, [ +Z ai(cos kx, f) + by (sin kx, f))
k=1
2 n
=713 = |2+ @+ 8D
k=1

where

2 n
a
D43 (0} +81) = ISu(IB

k=1

We can make two conclusions from this.

Theorem 3.1 (Bessel’s inequality). For all n € N,
5 af - 2 2 2
152 (Hllz = = + > (ap +07) < [If113
k=1

In particular, if f € L?, the Fourier coefficients are square summable, i.e., in
ls.

Theorem 3.2 (Riemann lemma). If f € L?, then

hm ap = hm by = 0.

In other words,

lim / f(x) coskxdr =0

k—oo J_ .

Theorem 3.3 (L2-convergence criterion). S, (f) — f in L?-norm if and only

if

[

ap

(oo}

o + (@ +60) = |I£13.
k=1

This is Parseval’s identity.

We will prove this later for f € C?™:

Theorem 3.4. If f is Riemann integrable on (—m,m) then S,(f) — [ in the
L2-norm.
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Think of the association

f€C* w (ap, {ar}, {be}),

where ag = (f, do), ar = {f, ), ao = {f, o). Then, we can think of this map
as a linear function f. € F:

C?™ 5 R x ly X Uy

G2 o0
with [[(ao, {ar}, {beDII* = 5 + 3252, (af + 7).
By Bessel’s inequality,

IFHIZ = ll(ao. {ar}, {0 DI* < |- 11113,
implying that
IFCF =gl < [-1llf = gl3-

So F is Lipschitz continuous map. By Parseval, F is an isometry as it preserves
the norm:

IFOI = 1fllz2

Another consequence of Parseval’s identity is that F is one-to-one. If f and
g have the same Fourier coefficients, then

]:(f_g) :f(f)_]:(g) = (0,{0},{0}).

But ||f —gll3 = | F(f — 9)||* = 0, implying that f = g.
Let f € C?™. Does S,(f) — f pointwise or uniformly? Given the Fourier
series, can we recover f7

Theorem 3.5. Suppose the Fourier coefficients of f are in {1:
Z lag] + [bk| < oo.
k=1

Then, S, (f) — [ uniformly.

Theorem 3.6. Let gi(x) = ay cos kx + by sinkx. Then,
gk ()] < |ak| + |bk|

for all x € R and for all k € N.
By Weierstrass M-test,

ago > .
g(x) = 5 +Z(ak coskx + b+ ksinkx)
k=1
converges uniformly and g € C*™. Since g has all the same Fourier coefficient
as f, f =g and S, (f) — f uniformly.
Indeed,

l/ g(x) coskxdr = lim 1 Sn(f) cos kxdx.

L - n—oo w J__
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Example 3.2.1. Show that if f € C?™ N CY(R), then S,(f) — f uniformly.
We can use Cauchy-Schwarz to prove this.

We observe that there are many sequences in ¢ which are not in /¢, e.g.,
ar = 1/k. So this suggests that not every f € C7™ has uniform convergent
Fourier Series. This is the major difficulty with Fourier series — pointwise and
uniform convergence.

If it usually convenient to express Fourier series using complex notation:

e = cos kx + i sin kx.

Hence, the k-th order term for f,

1 — % bi ik %_bi —ikx
akcoskx—l—bksmka:—(Q —1—22,)6 +(2 21’)6

f(k) f(=k)

and f(0) = ag/2. So we can write

keZ
with | g
£ _ —ikx
f) = 5z [ 1@
Since L L g
a = — f(z) cos kxdx and by, = — f(x) sin kxdx
T . T ) .
and so ) Lo
ag k1 e
> + % = or f(x)(cos kx — isin kz)dx.

—T

Introducing the complex inner product,

(f.9) L Wf(a:)g(x)da:.

~on x

So we see (f,eT™ X} = f(k). And Parseval’s identity becomes

IF13 =D I (k)2

kEZ

so the fourier series is a linear isometry: C?™(C) — ¢%(Z) — bi-infinite sequence
square summable.
Riemann’s lemma needs

lim f(x)e™*dz = 0.

|k|—=oo ) _n
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To explore pointwise and uniform convergence, we rewrite the partial sum.

Sn(f)

a = :
50 + Z(ak cos kx + by sin kx)

k=1
= 3 e

[k|<n

17 o
=D 5 B f(t)e”*dte™

|k[<n

™ 1 . _
:/ o D e f(t)t

kl<n

Dy (z—t)

—t) f(t)dt

Il
-
3
8

This is a convolution!
Note that 1
_ L ikt
Dn(t) = - e
[k|<n

2n
1 . ..
— e int E ezyt
2 :
Jj=0

1 Cint eit(2n+l) -1

2 et —1

1 Cint 6it(2n+1) -1
T o Et2(2isint(t/2))
1 ein+1/2)t _ p—i(n+1/2)t

27 2isin(t/2) ’

- 1 sin(n 4 1/2)t
Dn(t) = 5 —sni/2)

is the Dirichlet kernel.
Here are some nice properties:

1. Dy(t) = Du(—t)
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2. [T Dy(t)dt = 1 because

T 1 " ikt
Dy (t)dt = o > [ﬂe dt

_ I8
i |k|<n

1 " " ikt
o= IRLED DY I

k#£0" ~

=1

3. [Dn(t)] < ™2 = D,,(0). Indeed,

1 n ; »
|Dn(t)] = o 1+ E (e +e kt)H
=1
- Lt
T or

4. Dy ()] > 2 since [sin(t/2)] < [t/2].

5. Lebesgue number is defined as A, = ["_|D,(t)|dt > =5 logn.

6. We do have concentration at ¢ = 0, but |D,,(¢)| is not very small outside a
neighborhood of ¢t = 0. This is very different from the weierstrass kernel.

3.3 Lebesgue number

With this Lebesgue number, we can show how poorly S, (f) can approximate
f, even for bounded or continuous in the pointwise (and uniform) sense. Let

1 Du(z)>0
gn(l‘) = Sign(Dn) =40 D,(z)=0
-1 D,(z)<0

Then,

—T

Su(g)) = [ " gn (0Dt — )it = / " D))t
A

4
> ﬁlogn

Even though ||g||cc = 1, its n-th partial Fourier sum [|S,,(gn)| o is large. Con-
trast this with
15 (gu)l3 < llgall3-

By linear approximation at each discontinuities, we can construct a piecewise
linear continuous function f, ~ g, of sup-norm, for which

4
Sn(fn)(0) = A, > ﬁlogn.
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Theorem 3.7 (du Bois-Raymond). There exists f € C?™ for which S, (f) 4 f
pointwise.

Example 3.3.1 (Kolmogorov). There exists f with [ |f(z)|dz < oo with
Lebesgue integral for which

/ " (@) = Su(f)lda — o0

—7
With Sthongen hypothesis, we can prove some uniform convergence results:

Theorem 3.8 (Dini’s criterion). Suppose f € C?™ on (—m,n) with

/’T flz+t) - f(z)

: dt < oo
Then S, (f)(z) = f(z) as n — oo.

Proof. Consider

us ™

S.(N) - fe) = [ Duof@+ bt~ [ Duo)f)de

—T —

- /W tDn(t)—f(Hti_ [@) 4y

—T

_ /71' t <f(x +1) — f(:@) {sin nt cos % + cos nt sin ;}

» 2msin(t/2) t

—0
by Riemann’s lemma. O
Remark. If f is Holder continuous or Lipsitch continuous, i.e.,
[f(x+1) = flz)| <Ct]* 0<a<1

then Dini’s criterion holds.

3.4 Cesaro summability

But suppose f is only continuous (or Riemann integrable). There’s no guarantee
of even pointwise convergence, but do Fourier coefficients enable us to restrict

f(x)?

Let {Sy}nen be any sequence (in a normed vector space) and let

St + S,
e n

the average of the first n-term.
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Lemma 3.1. If S,, — S, then o, — S also.

Proof. Note that |S,| < n for all n. Then, there exists N such that |S, —S| < €
for all n > N. We write

Sit-+ Sy Sveaft-+ Sa
n n '

Onp —

But o,, converge even if S, diverges.

Example 3.4.1. Consider S, = (—1)". Then, o, = —1/n if n is odd and 0
otherwise; so 0, — 0. we say that the sequence is Cesaro summable.
Applying this to the Fourier partial sums S, (f),

s

Sn(f) = Dy (z —t)f(t)dt

Then

n—1
on(f) = = 3 Sil)
k=0
T n—1
_ % flz+ t)% S D — k(t)dt
- k=0

Define Fejer’s kernel:
n—1
=Y D—k(t)
k=0
Then,

C 1 asin(2k + 1)t)2
N Z sin(t/2)

= 3 o t/2 % ;; sin((2k + 1)t/2) sin(t/2)

n—1
= m cos kt — cos(k + 1)t
1
drnsin® (3)
1 9 Mt
4qrn sin® (%) 2
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So we can say , ( t)
B isin 5
Kn(t) - 2n sin2 (%)

Here are some properties of this kernel:
1. K,(t)>0forallte (—mmn)
2. [T Ka(t)dt =130 20 [T Dy(t)dt =1

3. Kn(t) < K,(0) = 52 (n/2)? _ n

27n (1/2)2 2"

4. K, (t) — 0 uniformly on away from ¢ = 07

Indeed, 0 < K, (t) < ﬁm for 6 < |t| < m. Hence,

sin? (;) > sin? (g)

U
2mn s €2 (§/2)

on § < |t| < m. Hence,
0 < K,(t)

in this region.
So K, (t) is a good kernel which is an approximation to the identity

Theorem 3.9 (Fejer’s theorem). For all f € O™,

on(f) = f
uniformly as n — oo, i.e., Fourier seires is uniform Cesaro summable.
Remark.
1 n—1
oulf) == 3 Sif)
k=0
n—1
_ 1 S qele
n
k=1 |l|<k

Corollary 3.1. If f € C?™, then ||Sn(f) — flle, = O uniformly.
Proof. As ||f — Sn(f)llex < IIf — on(f)||e, in subspace 7, hence for any € > 0,
there exists N such that

€

If = on(Hlle= < 7
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Therefore,

If = Sn(Pllee < IIf = on(f)lle2

:\/}T/ f = onl) 2t

< V2 f = on(f)lle=

<€
for all n > N. O

Remark. Since we can approximate cos kx, sin kx using Taylor’s expansio which
converges uniformly, we obtain a polynomial approximation to f, i.e., another
proof of Weierstrass approximation theorem.

Theorem 3.10. If f € C*™ N CY(R), thn S, (f) — f uniformly.
Proof. OLet f’ € C?™ and its Fourier coefficients are

ap = (f', bx) = % ! f'(z) cos kxdx

= % {f(z)coskz|™ + /7T ksin kxdx
= kby, N

Note that ag = (f’,1) = 0. Similarly,
B = (f',vn) = —kay.

In other words,

Now,

by Parseval’s. Similarly, > |bx| < 0.
Then, we have

oo
> la] + [bg| < oo.

k=1
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By Weierstrass M-test,
o0
<)
H<5+ ;; Jar| + [bx]) <

Hence, S,,(f) — g uniformly. But is g = f? Yes. Note that ||S,(f) — g|lez= — 0.
But ||S,(f) — fllez — 0. By uniqueness of limit, f = g on (—m, ). O
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4 Lebesgue theory

4.1 A taste of Lebesgue’s theory

Recall that Riemann integral for function f exists if there exists partition P
with 0 < U(f,P) — L(f,P) < €. In other words, oscillation in small interval
must be small.

Theorem 4.1 (Lebesgue). f is Riemann integrable iff f is continuous almost
everywhere.

Example 4.1.1. The function
1 z€Q
flz) =
- z¢Q
is not Riemann integrable because it is discontinuous everywhere.

The idea is to partition the range, not the domain. Let P = {yo < y1 <
-+« < yp} be a partition of the range of f. Define its pre-images

Ej={z€(0,1) : yj_1 < f(z) <y;}-

If the E;’s are interval, we can measure their total length, m(E;), and we are

back: . N
> Y S/O fdw <> y;m(E))
=0

Now, small changes on f do not mean small change in the domain but relates
to measurability of sets.

We want to extend the notion of length of an interval to a notion of measure
for measurable sets. In particular, the Lebesgue interval should be defined for
functions such that

{z:c< flx) <d}
are measurable. Those functions will be called measurable.

Example 4.1.2. Consider
1 z€eF
xT) =
YE(r) {0 oy
is measurable iff F is measurable.

Indeed,
{z:1/2<¢p(x) <2} =E,

i.e., what is integrable becomes question of what is measurable, not just conti-
nuity, since we want

b
/ Ye(z)de = m(E).

So what do we want from a measure? It should extend the notion of length:
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1. m(0,1]) = 1
2. m(E +h) =m(E) where E+ h={z+ h|z € E}

3. If E,, are pairwise disjoint, then
m(UEp) =Y m(Ep)

There are no measures that satisfy all these properties for all sets of R. So we
need to restrict the class of measurable sets and hence the class of measurable
functions, but they will include continuous functions.

4.2 Sigma algebra
Let X be a set. It can be [0,1],R,....

Definition 4.1. A family X of subsets of a set X is a o-algebra if
1. 0, X belongs to X
2. If Ae X, then A€ X
3. If {An} is a sequence of sets in X, then US2 1A, € X.

The pair (X, X) is called a measurable space.

Remark. By De Morgan’s rule,

Hence NB,, € X if B, € X
Example 4.2.1. X, all subsets of X, is a o-algebra.

Example 4.2.2. X = {(), X} is a o-algebra.

Example 4.2.3. Let X = R. The Borel algebra is the o-algebra B generated by
all open intervals (a,b) C R. Any set B € B is called a Borel-set. As any open
set is the union of (disjoint) open intervals, the Borel algebra is the smallest
sigma algebra containing open and closed sets.

Measure is a functional defined on X which good properties extending length.

Definition 4.2. A measure if an extended real-valued function p: X — R such
that

1. p(@) =

2. u(E) >0 forall E € X.
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3. p is countably additive. Let {E,,} be any disjoint sequence of sets in X.
Then w(UEy,) = > w(Ey). If u(UE,,) = oo then either u(E,,) = oo for
some m or Yy p(Ey) is divergent.

Definition 4.3. If a measure takes its value in R but not in RU {oco}, we say
that it is finite.

Definition 4.4. If there exists {E,,} of sets in X with X = UE,, with p(E,,) <
00, then u is o-finite.

Example 4.2.4. Note that R = U(—m,m) and pu(—m,m) = 2m < oo So
Lebesgue measure will be o-finite.

Example 4.2.5. Let (X, X) be a measurable space with X. the o-algebra of
all subsets of X. Let p € X. Define for £ € X

M)—{f L

This is a finite measure called the unit measure concentrated at p.

Example 4.2.6. Let X = N and X be all subset of N. The counting measure,
w(E), is defined as the number of elements in E if E is a finite set and oo
otherwise. This measure is o-finite.

We call (X, X, i) a measure space where X is a o-algebra and p is a measure
defined on X'. An important example is the Lebesgue measure.

The idea is to define an “an outer measure”, m*, which is defined on all
subsets of R by

oo
()= i, 3 )
where I, is an open interval. One can show that
e m* is subadditive, i.e., m*(UE,,) <> m*(Ey)
e m*((a,b)) =b—a="¥(a,b)).

Definition 4.5 (Caratheodory’s definition). A set E is m*-measurable if for
each set A, m*(A) = m*(ANE)+m*(ANE°), i.e., E and E° are sufficiently
separated that they divide an arbitrary set A additively.

Theorem 4.2 (Caratheodory extension theorem). The collection X of all m*-
measurable set is a o-algebra containing the intervals. Moreover, m* is countable-
additive on that collection X', and m* is o-finite.

We define the Lebesgue measure g = m* on X. We have B C X (the
Borel set) since B is the smallest o-algebra containing the intervals. There rae
Lebesgue measurable sets that are not Borel set, but the sets have measure zero:

X = B U {sets of measure zero}

One can show that there are non-measurable sets via the axiom of choice.
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Lemma 4.1. If m*(E) =0 then E is measurable.

Proof. Let A be any set. ANE C E so m* (ANE) < m*(E) = 0. Also,
ANE°C Aso

m*(A) >m* (AN E®) =m*(ANE°)+m"(ANE)
Note that A= (AN E)U (AN E°) so
m*(A) <m*(ANE)+m* (AN E°).
O

Theorem 4.3. Let i be a measure on o-algebra X. If EJF C X and E C F,
implying that p(E) < p(F). If w(F) < oo then p(F\ E) = u(F) — p(E).

Theorem 4.4 (Continuity of measure). Let u be a measure on a o-algebra X .

o If {E,,} is an increasing sequence in X, such that E,, C Ep1, then
WUEy,) = lim p(Eyy,).

o If {F,} if a decreasing sequence in Fp,y1 C Fy, and if p(F;) < oo then
p(NEy,) = lim p(Fy,).

Proof. WLOG, E = NF,, = 0 otherwise replace F; by F;\ F and N(F;\ E) = \.
Indeed, note
Fi=F\FUFR\FU--

and
F, :Fn\Fn+1UFn+l\Fn+2U"' .
Hence,
00 > pu(Fi) = > p(Fi\ Fitz)
i=1
and

p(Fn) = ZM(E \ Fit1)
is the remainder of a convergent series and hence
w(Fy) — 0= p(NE,).
O

Definition 4.6. A property hold (u) almost everywhere if the set where it fails
to hold has measure zero, i.e., there exists N € X with u(N) = 0 such that the
property holds in X \ N.

Definition 4.7. f = g almost everywhere iff p{x € X : f(x) # g(x)} = 0.
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Example 4.2.7. Take

1 zeF
£(&) = () = {0 oy
with u(E) =0, (e.g., u(Q) = 0). Then, f(x) = ¢g(r) = 0 almost everywhere.

Definition 4.8. We say f, — f almost everywhere iff there exists a set N with
w(N) =0 such that f,(x) — f(x) for allz ¢ N.

Example 4.2.8. Consider f,,(z) = 2™ on [0,1]. Then, f,,(z) — 0 for x # 1,

i.e., fm — 0 almost everywhere.

4.3 Measurable Functions

Definition 4.9. A real-valued valued function f is (Lebesgue) measurable if
Va € R:
{reX: f(z)<a}

is measurable in X.
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Practice problems

Example 4.3.1. f is continuous on [0,1]. Find the limit, and prove your

answer: 1

lim (n+1)a" f(x)dx

n—oo 0
Proof. First, f is continuous on [0, 1] so there exists 6 > 0 such that |f(z) —
f(1)] < €/2 when z € (1 —6,1]. Second, f is bounded on [0, 1] so there exists
M = ||f|loc < o0. By triangle inequality, ... Then,

/01(n+ 1™ f () da — f(l)‘ _ /Ol(n+ e f(z)dz — /Ol(n+ e f(1)dz

/0 (n+ D)a"(f(x) — F(1))da

< / (n+ D" |f(x) — F(1)|de

1-6 1
- / (n+ 1| f(x) — F(1)|dz + / (n+ 1)a"|f(x) — f(1)|dx
0 1-46

S/Ol_(s(n—l-l)x”@M)dx—i-/l

€ €
<2M(—) <
= ) 12

_6(n +1)z" (g) dx
=e
O

Example 4.3.2. If > | |a,| < oo, show that >~ | a,e” "% is uniformly con-
vergent on [0, 00).

Proof. Let f,(x) = ape™ ™. Since e=™* <1 for all z € [0,0), we have

|fa(z)] = |ane™™"|
= lan| - [e™""
< an|

So || falloo = |an|. Then,

S @) <3 Jan] < 0
n=1 n=1

By M-test, > an,e™"* converges uniformly on [0, 00). O

Example 4.3.3. If we assume only that a, is bounded, show that > a,e™"*
is uniformly convergent on [d, c0) for every ¢ > 0.
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Proof. Since (a,,) is only assumed to be bounded, > a,, need not converge (for
example, consider a,, = 1/n). So we can’t use |a,|e ™ < |a,|le”™" = |a,| as in

part (a).
Fix § > 0 and set f,(z) = ane™"™®. Let N = sup|a,|. Then,

|[fa(@)] < Me™"?

for all z € [§,00). So || fulleoc < Me™™ Choose N € N large enough so that for
all n > N, we hvae e 0 < 1/n2. For such N, we have

00 N-1 o)
Dola@l =Y f @+ Y 1 f @)
n=1 n=1 n=N

N-1 oo M
—nd
< E Me + E ﬁ<oo
n=1 n=N

O

Example 4.3.4. Let M = (0,00) with d(z,y) = |1/ — 1/y|. Is (M,d) com-
plete? Justify your answer.

Proof. Consider the sequence (x,) = (n)52; and let € > 0 be given. Choose
N € N so that for all n,m > N, 1/n,1/m < ¢/2. By the triangle inequality,

1 1 1

1
AT, X)) = |— — — <—+E<e

n m n

So (z,) is Cauchy in (M,d). But , -+ 0asn — oo in (M,d) and 0 ¢ M. O

Example 4.3.5. If f : (0,1) — Ris uniformly continuous, show that lim,_.o+ f(z)
exists. Conclude that f is bounded on (0,1).

Proof. Let (z,,) C (0,1) be a decreasing sequence such that x,, — 0 in R. Thus,
() is Cauchy.

Since uniformly continuous functions map Cauchy sequences to Cauchy se-
quences, (f(zy))22, is Cauchy in R. Since R is complete, there exists ¢; € R
such that lim, o f(2,) = ¢1. So lim,_,o+ f(z) exists. In the same way,
lim,_,;-1 = ¢y exists.

Defin f:]0,1] — R by

c1 ifz=0
fla) =4 flx) ifze(0,1)
Co ife=1

By definition, f is continuous on the compact set [0, 1] so f is bounded on [0, 1]
and thus bounded on (0, 1). But since f(x) = f(x) on (0,1), we have that f is
bounded on (0, 1). O
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Example 4.3.6. Let (X,d) and (Y, p) be metric spaces, and let f, f, : X =Y
with f,, — f uniformly on X. If each f,, is continuous at z € X, and if z,, —
in X, prove that lim,, o fn(z,) = f(2).

Proof. Since f, is continuous, f is continuous. Let € > 0 be given. By continuity
of f at x € X, there exists § > 0 so that d(z,y) < d implies p(f(x), f(y)) < €/2.
Using the fact that z,, — x, we can choose N; € N large enough so that for
all n > Ny, d(z,x,) < 0 implies p(f(x), f(xn)) < €/2. Since f,, — f on X, we
can find Ny € N such that n > Ns implies p(f,,(z5), f(z)) < €/2 independent
of x € X. In particular, p(fn(zn), f(xn)) < €/2 for any fixed z) € (2,)02;.

Let N = max{Ny, No}. Then, for all n > N we have by the triangle inequal-
ity,
P(fa(@n), f(2) < p(fa(zn), fzn)) + p(f(2n), f2)) <€
O

Example 4.3.7. Show that there cannot be a sequence of polynomials P,, for
which P,, — sinz uniformly on R.

Proof. Suppose in order to derive a contradiction that there exists a sequence
of polynomials P, such that P, — sinz on R. Let ¢ > 0 be given. Then, there
exists N € R such that for all n > N and for all x € R, we have

—€e < Pp(x) —sin(z) < e

Rewriting, we have
—e—1< Py(r)<e+1

So |P,(x)| < € + 1. However, polynomials are unbounded and this is a contra-
diction. O
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