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1 Introduction

1.1 Review

Definition 1.1 (Independent random variables). X and Y are independent iff
forany a,b € R, P(X <a,Y <b)=P(X <a)P(Y <)

1.2 Stochastic processes

Definition 1.2 (Stochastic process). Let T be a subset of [0,+00]. For each
t €T, let X; be a random variable. Then, the collection of {X; : t € T} is called
a stochastic process. Simply put, a stochastic process is just a family of random
variables.

Example 1.2.1. Let T'= {0}. Then, {X,} is a stochastic process.

Example 1.2.2. Let T' = {1,2,3,...,m} be a set of finite natural numbers.
Then, {X1, X3, X3,...,m} is a stochastic process.

Example 1.2.3. Let T = {0,1,2,...} be a set of all non-negative integers.
Then, {X;, X3, X3,... } is a stochastic process.

Example 1.2.4. Let T = [0,400) be a set of all non-negative real numbers.
Then, {X; : ¢ > 0} is a stochastic process.

Definition 1.3 (Time index). Let T be time index. If T ={0,1,2,...}, then
the time is discrete. If T = [0,00), then time is continuous.

Definition 1.4 (State Space). State space, S, is the space space where the
random variable takes the values.

Given a sample space, S, and time index ¢t € T, we can define X;(w) € S,
to describe a stochastic process. Here, {X; : t € T} describes the dependence
relation.

We can further categorize a stochastic process by considering the following
two cases: countable and uncountable state space. Time index can also be
categorized as follows: discrete and continuous time. Note that each stochastic
process must belong to one of the four categories.

Remark. Every stochastic process can be described by the following three fac-
tors:

1. Time index
2. State space
3. Dependence relation
Example 1.2.5. Let S ={0,1} and T ={0,1,2,...}. Given,
v {1 with probability of 1/2
" 0  with probability of 1/2

{Xo, X1, X5, ...} is a stochastic process and is often noted as Bernoulli trials.



2 Markov chains (Discrete time Markov chains)

We will only be dealing with discrete time Markov chains in chapter 1 and 2. In
other words, T'= {0, 1,2, ... }. It follows that the state space, S, will be at most
countable. Finally, Markov describes the dependence relation: Xg, X1, Xo,....

In example every trial of the Bernoulli trials was independent. On the
other hand, in a Markov model, X, 11 depends on X,, but not on any past stats,
X17X23 s 7Xn—l'

2.1 Markov property

Definition 2.1. Markov property can be expressed as follows:
P (Xn+1 = ’In+1|X0 =Zg,y... 7AX’n_l = a:n_l,Xn = $n)
=P (Xn+1 - xn-‘rl‘Xn - xn)

P (X,+1 = y|X,, = x) is noted as the transition probability and it describes
the one step transition from z to y starting at time n. If

P(Xnp1 =ylX, =12) =P (X1 =y[Xo=1),
then the Markov chain is called to have stationary transition, or homogeneous.

Definition 2.2. Let {X,, : n = 0,1,2,...} be a homogeneous Markov chain.
Then,

Py =P (X1 =ylXo=2) = P (Xt =y|Xn =12),
1s the one-step transition probability.

Definition 2.3. Following the definition[2.3, we can now define one-step tran-
sition matrix:

P= (Pry)x,yes
Remark. Given, Xy, mo(z) = P(Xo = ) is called the initial distribution.
Given a Markov chain, we wish to answer the following fundamental ques-
tions:
1. Distribution of X, for any n > 1.
2. Join distribution of X,,,, ..., X, forany 1 <mnj <ng <--- <np k,> 2.

3. Long time behaviour, i.e.

nl;rr;o P(X, =x)
Example 2.1.1. We have the following Markov chain: {X, :n =0,1,2,...}

where S = {0,1}. For this model, its initial distribution can be described as
follows:



Transition probabilities can be written in a similar fashion:

P(X;=0Xo=1)=¢q, P(X;i=1Xo=1)=1-¢

where 0 < p,q < 1. For this Markov chain, we can consider the following three
cases:
Case 1. p=g=0.

This case is trivial.

Case 2. p=q=1.

This case is also trivial.

Case 3. 0<p+qg<2.
PXy41=0)=P(X,11=0NX, =0+ P(X,11=0NnX, =1)

( 0)P(X,4+1 =0/X,=0)4+ P(X,, =1)P(X,41 =0/X, =1)
(Xn =0)(1—p)+ P(Xn =1)q

( 0)1—=p)+ (1 - P(X, =0))qg
=(1-p—qP(X,=0)+q

We can further expand this as follows:

P
=P
P

P(Xp41=0)=(1-p-q)P(X,=0)+g
=(1-p-q)[1-p—q)P(Xn1=0)+¢| +¢

n—1
=(1-p—q)"P(Xo=0)+¢» (1-p—q)
§=0
Note that .
S ; l-p—q"—1
1lop_qg)y =+ 4 = -
j;)( P—q) 0—p_g=1

Therefore, we have
(1-p—g)" -1

( -p—q) -1

=(l-p-qa-——(1-p—gq"—1
(1-p—q)a p+ (1-p—q"—1)

P(Xp41=0)=(1-p—q)a+q

For this Markov chain, we find that

lim P(X, = 0) = ——
n—00 p+q



2.2 Transition function and initial distribution

Example 2.2.1.
Ppy = P(Xnt1 = y| X, = 2)

= P(X; =y|Xo =)

Definition 2.4. Transition function, P(z,y) : S x X — [0,1], satisfies the
following conditions:

1. P(x,y) > 0.

2. > yes Plz,y) =1 forallz € 5.

Definition 2.5. Given a transition function, P(xz,y), a transition matriz is

defined as follows:
]P = (P((E, y))x,yES

)

Example 2.2.2.

Example 2.2.3.

1/4 1/2 1/4
1/8 1/4 5/8
0 1/4 3/4

Definition 2.6. Initial distribution is a probability mass function (pmf) that
1s defined as follows
mo(z) = P(Xo = ).

Note that it must satisfy the following conditions:

1. 7T0($) Z 0

2. Y pesmol(z) =1

Theorem 2.1. Let {xy : n = 0,1,2,...} be a Markov chain with initial dis-
tribution mo(x), and one-step transition matriz P = (P(z,y)) Then, the
distribution of X, is

P(X, =z, = Z Z Z mo(xo)P(zo, 21) ... P(Xp—1,2y)

TpES x1ES Tp_1ES
=moPP...P
—

n

z,yes"

Proof. Foranyn>1, z,€S5
P(Xn:xn) :P(anajnny estl ES,...,Xn,1 ES)

:Z Z Z P(Xn:(En7X0:{E0,...,Xn71:l'nfl)

roES 1 ES Tn_1ES



Note that
PX,=zn,Xo=20,-..,Xn_-1=1=Tp_1)
= P(Xo = x0)P(X1 = 21| X0 = 20) P(X2 = 22| Xy = 29, X1 = 1)
< P(Xp, =an|Xo=20,...,Xn-1=Tpn_1)
Using the Markov property, it is evident that the equation above is equivalent

to P(XO = I]L‘())P(Xl = lfl‘Xo = I‘o) cee P(Xn = xn‘Xn—l = l‘n_l). O

Example 2.2.4. Simple random walk is a Markov chain:

X1—1 q
Xn_ Xn—1+1 p
Xn—lf]- q

where S = {0,+1,4+2,...}.

Example 2.2.5 (Ehrenfest chain). Suppose that we have a box and a inivisble
bar that divides the box into region I and II. d balls are placed in a box. Initially,
n balls are distributed in region I and d — n balls are distributed in region II.
You pick a ball at random. If it’s from region I, you put it back in region II. If
it’s from region II, you put it back in region I.

First, note that this Markov chain has a state space of S = {0,1,2,...,d}.
We observe that

0 y>1
P(0,y) =
1 y=1
0 y#0,2
P(Ly) =14 y=0
11— y=2
In general, we have
0 y#ax+1l
Plz,y)=1-% y=a+1
Z y=x—1
Combining these results, we have the following transition matrix:
0 1 0
1 1
a2 0 1-3

(d+1) x (d+1)



Example 2.2.6 (Birth-Death Markov chain). At each time step, one person
can die and a new person can be born:

Pe Yy=Xp+1
qx y:Xn_]-
X =
i Tx y:Xn

0 else

Example 2.2.7 (Queuing chain). At each time step, one customer is served
and new customers arrive:

X L= Yn+1 lenZO
mt Xp =14 ynps if X, > 1

We introduce a new notation, * = z V 0, which is essentially max(x,0).
Using this notation, we can rewrite the Markov chain as follows

Xn+1 == (Xn - 1)+ + Yn

Example 2.2.8 (Branching Markov chain). If Xy = 0, then X,, = 0 for all
n > 1. We call 0 an absorbing state.

Suppose Xg > 1. An individual, ¢, will produce y; number of offsprings at
each generation. Then, we will have

X1:y§1)+..+y§3

Each individual in generation 1 will also produce offsprings. Then,
2 2
Xo =y oy

We wish to understand how the population will evolve over time. To do so,
we can look at the expected value. It’s clear that the population will grow if
Ely] > 1. On the other hand, if Efy] < 1, the population will eventually die
out.

Example 2.2.9 (Wright-Fisher Markov chain). For this Markov chain, we start
by make the following assumptions:

1. The population size is fixed.
2. No generation overlap.

Within the population, there are N number of individuals of two types: I
and II. Let Xy be number of type I individuals at time 0. Each individual
in generation 1 pick its parent from generation 0 at random. This process is
equivalent to repeating Bernoulli trials N times (also equivalent to binomial).



Therefore, we have

X,
X, ~ Bin(N, WO)

X1

Xy ~ Bin(N, 57)

X
Xn+]_ ~ BIH(N, Wn)

2.3 Joint distribution

Given a Markov chain with mp and P, how do we find (1) the distribution of X,
and (2) the joint distribution of X,, and X,,, where n < m?
From the previous section, recall that w,, = o PP...P.
—

n

Example 2.3.1. Consider the following transition matrix:

1/2 1/2 0 0
0 1/2 1/2 0
0 0 1/2 1/2
0 0 0 1

Supose that mo = (1,0,0,0). Then, we have

T = (17 Oa 070)]? = (1/27 1/2,070)
75 = (1,0,0,0)PP = (1/4,1/2,1/4,0)

Eventually, all states will converge to the absorbing state and stay there.
To find the join distribution, we first note that

P(Xn =z, Xpm = xm) = P(Xn = $n)P(Xm = xm|Xn = xn)
=P(Xmm = @m) P(Xm—n = Tm|Xo = 24)

Definition 2.7. For any interger m, m-step transition matriz is given by
P (z,y) = P(Xon = y|Xo = o).

When m = 0, we have

0 y#=x

We can decompose m-step transition matrix as follows:

P°<x,y>—{1 =

P™(x,y) = P(Xn = y|Xo = z)
=PXn=y,2m1€8,..., X 1€ 5Xo=2)

_ Z Z Z P(z0,21) ... P(xn_1,y)

z1ES x2€S5 Tym—1€S



Then, we have
P(Xm:y):P(Xm:vamES)
= Z P(Xm:anOZxO)

ToES
= Y P(Xo =x0)P"(Xo,y)
ToES
= Z o (o) P (X0, y)
ToE€ES
Therefore, we have
(P(Xm =Tm)),, cs=moP"

Definition 2.8 (Hitting time). Given A C S, hitting time Ta is defined as
follows:
T, =min{n>1: X, € A}

If A = {x}, then we have T, = T,. Note that
° TA Z 1
o Ifx, ¢ A foralln>1. we have Ty = +00

Now, we wish to understand the distribution of T} given thatn Xy = =.
First, note that we have

P,(T,=1)=P(T,=1X,=x) = P(z,y)
Similarly, we have
Py(Ty=2) = Py(z1 #y,22 = y)
=Y P(z,w)P(w,y)

w#y
Generally, we have

Pw(Ty:n'i'l):Px(l‘l F Yoy Ty F Y, Typl :y)
PXo=2,X1#y..Xn#y,Xnt1=Y)

P(Xo = LL‘)
 PXo=z2, X1 #y) PXo=2, X1 #y.. X0 #y, Xni1 =)
P(Xo =2) P(X =x,X; #v)
= 3 Pla,21)Pyy (T, = n)

T17£Y

Note that the last result follows from the Markov property.

Lemma 2.1. P™(z,y) = > P.(T, = k)P *(y,y)
k=1

10



k=1

- z’": P(Xo=2,T, =k Xm=1)
k=1 P(Xo = z)

- i P(Xg=2,T,=k) P(Xo=2,T, =k, X,;, = y)
el P(XO = SL’) P(XO = SL’,Ty = k/’)
m

=Y Pu(T, = k)P(Xp = y|Xo = 2,2 # y, 21 = y)
k=1

= ZPJU(Ty = k)P(Xpm = ylzk =y)
k=1

2.4 Recurrence

Before we define recurrent and transient states, we introduce the following no-
tation:

Py = Pu(Ty < 00) = sz(Ty =k).
k

Definition 2.9 (Recurrent and Transient states). A state x is called recurrent
if pze = 1. Ohterwise, it is called transient.

We introduce more notations:

1 =
o I.(y) = {O lee N (indicator function of x).

1. P.(N(y) > m) = pwyp%_l
2. Po(N(y) =m) = Pmyﬂ%_l(l - pyy)
3. Py(N(y) =0)=1—pay

11



Proof. First, assume that theorem 1 is true. Then, we have

Pu(N(y) =m) = Px(N(y) >m) = Pp(N(y) = m+1)

= prypyy (1 - pyy)

Now, we want to prove theorem 3:
Pp(N(y) =0) =1—-FP(N(y) = 1)
Finally, we just have to prove theorem 1:

P,(N(y) > m) = P,(The Markov chain visits state y at least m times)

Do D0 BTy =m)Py(Ty = na) - Py(Ty = my)

ni>1 Ny >1

S PuTy=m) Y Py(T,=ns)-- > Py(Tyny)

ni>1 no>1 Ny >1
= P(T, < o) P,(T, < x0) -+ P,(T, < o)
m—1

O

Before looking at the next theorem, we introduce another notation: E,[-] is
the expectation given the initial state of . Then, we have

Er[Iy(Xn)] = Pz(Iy(Xn = 1)

Furthermore, we introduce the notation, G:

G(z,y) = Es[N(y)]

¥ e
=> Ej 1, (2

= Z::P"(fv, y)

:E:U

Theorem 2.3.

1. If y is transient, then for any x € S, P,(N(y) < o0) =1 and G(x,y) =
< o0.

zy
1-Py,

12



2. Ify is recurrent, then for any x € S, P,(N(y) = 00) =1 and G(y,y) = co.
Furthermore, we have P,(N(y) = 00) = pgy and

Gla,y) = 00 if Py >0
e 0 Z.fpacy:O

Proof. Suppose y is transient. Then, we have p < 1. For any =, we have

Pp(N(y) = 00) = Py < N {Nw) > m}>

m=1

m—r oo

. m—1
= lim

Therefore, we have

Furthermore,

= Z mpxyp%_l(l - Pyy)
= pay(1 = pyy) Z mpyy

= pay(1 = pyy) (Z pyy>

1
vy

Let’s prove the second statement. If y is recurrent, then p,, = 1. For any
x, we have

Po(N(y) Po(({N(y) = m}
= lim P,(N(y) > )

m—o0

= lim m—1

= pmy

13



Then, we have

y) = Zmpa:yp%_l
= mpay
= Py P M

Example 2.4.1. Let y be a transient state. Find
lim P"(z,y).
n—oo

Recall that G(z,y) = > oo, P"(2,y) = £~ < oo. Since the series con-

—Pyy
verges, it is easy to see that lim P"(z,y) =0
n—oo

Example 2.4.2. Let {X,,,n > 0} be a two state Markov S = {0,1}. Can both
be transient?
We start by noting that P,(X, € S) = 1. If both are transient, we have

lim P, (X, €S5)= li_}rn P"(x,0) + P"(x,1) =0,

n—oo
yielding a contradiction.

Definition 2.10. A Markov chain is recurrent if all states are recurrent, and
the chain is transient of all states are transient.

Definition 2.11. A state x leads to state y of pzy > 0 denoted x — y.
Remark. 1t is possible that = /4 x.
Lemma 2.2.

1. © — y iff there exists n > 1 such that P"(x,y) > 0.

2. If vt -y andy — z, then v — z.

Proof. By definition,  — y ifff p;, > 0. In other words, P,(Ty < oo) > 0.
Then,

o o0
0 < Pu(T,, <oo:Z (T, =n) SZ
: @

Therefore, P"(x,y) > 0 for some n. Conversely, if P
we can define

y) > 0 for some n > 1,

ng = min{n > 1, P"(x,y)}.

Clearly, 0 < P"(z,y) <= Py(Ty = ng) < pay-
To prove the second statement, note that x — y iff In; > 1 such that
P™(z,y) > 0. Similarly, y — z iff Hng > 1 such that P"2(y,z) > 0. Then,

PMEn (g 2) > P (2, y) P (y,2) > 0

Therefore, x — z O

14



Theorem 2.4. If x is recurrent and x — y, then y is recurrent and pyy =
Pyz = 1.

Proof. To yield contradiction, suppose py, 7 1. Then,
1—py >0

Furthermore, if  — y, there exists ny such that P™(x,y) > 0. This implies
that

P (a,y)(1 ~ pye) > 0

The first part is the probability that x reaches y in n; steps. However, the
second part says that y never goes to x, contradicting the assumption that x is
recurrent. Therefore,

Pyz = L.

To prove that y is recurrent, we first note that if x — y, there exists n; such
that P™ (x,y) > 0. Similarly, if p,, = 1, y — 1 and there exists ns such that
P™(y,z) > 0. Then,

[M]8

Gy,y) =) P"(y,y)

3
Il
_

Pn1 +no+m (y y)

3
&

P (y,2)P™ (, 2) P

3
l‘

= P"(y,x) <Z Pm(x,x)> P™ (z,y)
n=1

G(z,x)=00

Finally, to prove that p,, = 1, we note that y is recurrent. Then, by following
the proof of the first statement, we can prove that p,, = 1. O

Definition 2.12. If x — y and y — x, we write
Ty
and say that x communicates with y

Definition 2.13. A subset C is closed if for any x € C andy ¢ C, x 5y
(p:ry <0).

Definition 2.14. A closed subset C is irreducible if every x,y € C' communi-
cate with each other.

15



We can further define closed and irreducible set where (1) z,y € C, = <> y,
and (2) z € C, z ¢ C, py, = 0. Closed, irreducible, and recurrent set is then
defined as (1) z,y € C, x <> Y, poy = pyz = 1, and (2) z € C,2 ¢ C, p,, = 0.

Then, we can decompose a state space, .S, into a set of recurrent and transient
state:

S=CrUCr
Theorem 2.5. If for z,y € Cr, Co NCy # &. Then, C, = Cy.

Proof. Let w € C, NCy. Then, w <+ = and w <+ y. For any z € C,, we have
2T WY

and
z € Cy,

implying that C, C Cy. By symmetry, C, C C,. Therefore, C, = C,,. O

Theorem 2.6. The state space S of a Markov chain can be decomposed as two
union of Cr and Cp. Furthermore, Cr can be decomposed into the union of at
most countable number of closed, irreducible, recurrent sets.

Note that you have to stay in a recurrent set if you start from a recurrenut
set. On the other hand, if you start from a transient set, you have to move to
a recurrent state if the set contains finite elements. If the set contains infinite
number of elements, it is possible to stay in the transient set forever.

Example 2.4.3. Let {X,,,n = 0,1,2,...} be a Markov Chain with S =
{0,1,2,3,4,5} and the following one step transient matrix:

1 0 0 0 0

1/4 1/2 1/4 0 0 0
0 1/5 2/5 1/5 0 1/5
0o 0 0 1/6 1/3 1/2
o 0 0 1/2 0 1/3
0 0 0 1/4 0 3/4

0

P=

(a) Find Cg and Cr

Note that 0 is an absorbing state. If you start from state 1 or 2. you have a
positive probability of going to state 0. Therefore, state 1 and 2 are transient.
On the other hand, we have 3 — 4 — 5 — 3, implying that

3445,
Then, {3,4,5} form a closed, irreducible, and recurrent state. Therefore,
Cr=1{0,3,4,5}
Cr ={1,2}

16



(b) Decompose Cr

Clearly, Cr = {0} U {3,4,5} and two subsets are irreducible.
Remark. All closed, irreducible, finite set are recurrent set.

Example 2.4.4. Let S = {0,1,2,3,...}. Given the following transition matrix,

1 00 0
01 00
R=10 010

Then, each state is an absorbing state and we have
o0
Cr =i}
i=0

Example 2.4.5. Consider the following transtion matrix:

01 0
R=10 0 1
1 00
Then, since 1 — 2 — 3, we have
Cr=1{1,2,3}

Example 2.4.6. Consider the following transition matrix:
01 0
R=10 0 1
0 0 1
Then, we have Cr = {1,2} and Cr = {3}.

Example 2.4.7. Consider the following transition matrix:

0 1 0
R=]|a 0 1—a
0 0 1

For all 0 < a < 1, decomposition of the state space does not change. Higher a
only implies that it will take longer to get to the absorbing state.

17



2.5 Absortion probabilities

Definition 2.15 (Absortion probabilities). Let C' be a recurrent, irreducible,
closed set. For x € Cr, probability of © being abosrbed by C' is given by

pc (@) = pz(Te < o0)

To calculate the absortion state, we must solve

z) =Y Py + Y Pl@y)pc)

yeC yeCr

This is in fact a system of linear equations. We are interested the uniqueness of
the solution.

Theorem 2.7. If Cr is finite, then the system

ZZZE:'FXx7y)_% j{: Wy

yel yeCr
has a unique solution w, = pc(x).

Proof. Let {w, : x € Cp} be any solution. Then,

Uh:::jgj-waay)_F j{: f%xvy)u@

yeC yeCr
=Y P(x,y)+ Y Py |Y P2+ Y, Plyz)w
yel yeCr zeC yeCr
=Y Py + Y, > PyPly,2)w.+ > > Px,y)Py2)
yel yeCr z€Cr yeCr zeC
= Z P(x,y) + Z P%(z, 2)w, + Z Z P(z,y)P(y, zsss)
yel zeCr yeCr zeC
=P(Tc <2)+ Y P(z,2)w
zeCr

(T <m) + ZP21‘Z
z€Cr

Now, we can take the limit as n goes to infinity:

= i < 2
Wy nh_)rr;()( (T. <n) Zsz )

zeCr
= P, (T, < o0) + Z ILm Pz, 2)w,
zeCr

Since Cr is finite, lim P™(z,z) = 0, and therefore, w, = P, (T, < 00). O

n—oo

18



Example 2.5.1. Let {X,,,n =0,1,2,...} be a Markov chain with S = {1,2,3,4}

and
1 0 0 0

1/4 0 3/4 0
0 1/3 1/3 1/3
o 0 0 1

P =

Let C' = {1}. Find pc(2), pc(3)
First, note that we can decompose the set as follows:

Cr= {134}aCT = {2a3}

Since Cr is finite, we have

wp =Y Play)+ 3 Playw,

yeC yeCr

Then, we have
wy = P(3,1) + P(2,2)ws + P(2,3)ws

1.3
- Z + ng
Similarly, we have
w3 = %wg + %wg
Therefore, we have
1 2
ws = 5wz =g

Theorem 2.8. If for any xz,y € S, x <> y, then the chain is irreducible. Then,
it follows that a finite state of irreducible Markov Chain is recurrent.

Remark. Infinite, irreducible Markov chain can be transient. Irreducibility
doesn’t imply recurrence.

Then, when will an inifinite state, irreducible Markov chain be reccurent?
We look at the birth-death Markov chain to understand this idea.

2.6 Birth-Death Markov Chain

Definition 2.16. A Markov Chain {X,,,n = 1,2,...} is called a birth-death
Markov chain if

1. §={0,1,2,...,d} where d can be either finite or infinite. When d = oo,

S=1{0,1,2,... }.
Dz y:x+1
T =z-—1
2. P(z,y) = o U=7 .
Ty Y=
0 else
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Note that if p, > 0,q, > 0, for 1 < a < d—q and pg > 0,gq > 0, then the
chain irreducible. If the chain is irreducible and d < oo, then the birth-death
chain is recurrent.

Theorem 2.9. For any a,b € S and a < b. Let u(x) = P,(T, < Tp) for
a <z <b, ula) =1,u(d) =0. Also, define
1492 - - gk

JkE>1
Pip2 - - Pk

To=1,T

Then, -
uu%=§ﬁﬁ}
r=117
Proof. First, note that
u(x) =P (T, < Tp)
=P, (r1y=xzorx+lorx;=2—1,T, <Tp)
=P, (x1=2,T, <Tp)+ Pe(r1 =2+ 1,T, <Tp)
+ Pp(x1 = 20, T, < Tp)
=P.(v1 =2)Pp(Ty < Tp) + Po(x1 = + 1) Ppy1 (T, < Tp)
+ Pty =2—-1)P, 1P(T, <Tp)
=ryu(z) + pyu(z + 1) + qpu(z — 1)
Rearranging, we get
(1 =ra)u(z) = pru )+ qou(z — 1)
(P2 + qz)u(z) = pru )+ qzu(z — 1)
pa(u(z +1) —u(®@)) = gz (u(@) — u(z — 1))

Now, we can use this formula recursively:

(x+1
(x+1

=L (uz) - u(e -
U($+1)—U($)—p (u(z) —u(z — 1))

x

= Lo 9ot gy — 1) — u(z — 2))

Pz Pz—1
da Qa+1
== u(a+1) —u(a
Lo B a4 1) — ufa)
mope Go ol
= Dhe 2 2 (u(a+ 1) — ula
e o+ 1)~ (o)
I,
= X (u(a+1) — u(a).
By definition, we know that u(b) = 0 and u(a) = 1. It is then trivial that
u(b) —u(a) = —1. Finally, we can apply telescoping to achieve the desired result:
—1l=u)—ub—-1)4+ub-1)—ub-2)+ - +ula+1) —u(a)
_ I‘bfl ]-—‘b72

2=t (u(a+ 1) — u(a) +

ot (ula 1) — u(@)

(u(a+1) — u(a))
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Thus, we have

a

u(a) —ula+1) = ﬁ

If we put everything together, we have

T,
u(z) —u(w+1) = 5 (ule + 1) — u(a))
R
for all a <z < b.
Finally, since u(z) = u(z) — u(b), we can apply telescoping again:
u(z) =u(x) —u(lz+1)+ulz+1)—ulz+1)+---+uld—1) —u(d)
Zb71 T
= L=l
Zr:a FT

We have now derived a major result for the birth and death Markov chain. O
Lemma 2.3. pg = P(0,0) + P(0,1)p10.
Proof.
poo = Po(To < o0)
= PO(XI = OaTO < OO) +P0(X1 = 17T07OO)
= Py(X1 =0) + P(0,1) P, (Tp < o0)
= P(0,0) + P(0,1)p10

O
Theorem 2.10. The birth and death Markov chain is recurrent iff > Iy = o0o.

r=0

Proof. Let a =0, b=n, and z = 1. Observe that
n—1
r,+T,-T, 1
() = ATy < T) = Zest it =le -y L
Zr:O FT Zr:O F"'

Then, since

. . 1

Clearly, p1p = 1 iff > T, = oco. When pjp = 1, we have pgg = P(0,0) +
r=0

P(0,1) =1 and 0 becomes a recurrent state. Since the chain is irreducible, it is

reccurent. O
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Example 2.6.1. Consider a birth-death Markov Chain whose state is a set of
all non-negative integers. For each state, it has a probability of going up of 0.51
and probability of going down of 0.49. Then,

P, = 94
b1 DPr

~ [0.49\"
~\0.51
Clearly, > T is a converging geometric series. Therefore, this is a transient

k=0
Markov Chain.
Example 2.6.2. Cnosider the following chain:
po z=0y=x+1

0 z=0,y=2x-1
ro x=0,y=0

P(z,y) =
(@) Pz z2>ly=xz+1
r. x>ly==x
qG: x>1l,y=x—-1
We may define
x4+ 2 x

Pe =5+ 1) * " 2@+ 1)

Then, it follows that p, + ¢, = 1 and r; = 0.
We wish to know if this Chain is transient or not. First, observe that

_an_1

I'y

p1 3

In general, we have

1 2 x
. — - 9e _ 20041 20241 T 2(z41)

1t2 242 T+2
P1-DPx 2(1++1) 2(2++1) "'2(9:;1)
. 1.2..."1:
C(1+2)2+2)- (2 +2)
1-2

(z+ 1)z +2)

22



Then, we see that

=0
1
_1+3+22( z+1) :c+2))

1 1 1
=1 2
T3 ( +1 33+2>

1 2
=14+4-+-=2<
+3+3 00

Therefore, this chain is transient.

2.7 Branching process

In the branching process, offspring of each individual follows a distribution
whose probability mass is given by P(z). Then, we have

Xn

1
K1 = v

with X; = ¢f. We will be looking at the case where 0 < P(0) < 1 and
PO)+P(1) <1

For this Markov Chain, state space is defined as S = {0,1,2,...}, and 0 is
the absorbing state. Since all the other states are transient, we define p as the
probability of extinction.

Definition 2.17. Let u = E[¢p]. The model is called subcritical if i < 1; critical
if p =1; supercritical if p > 1; and explosive if p = oo.

Theorem 2.11. p=1iff u <1.
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3 Stationary distribution

3.1 Stationary distribution

Definition 3.1. Consider a Markov Chain {X,, n = 1,2,3,...} with state
space S. A probability ™ on S is called a stationary distribution of the chain if

Z m(x)P(x,y) = w(x), for allxz € S,
zeS
where P = (P(x,y)) is the one-step transition matri.
Lemma 3.1. If 7y = m, then P(X,, = z) = 7(z) for all n.
Proof. If n =0, mg = m. Now, assume n = k is true. Then,
P(Xpp1 = 2) = P(Xp, = S| Xps1 = 2)

= P(Xy = 2)P(Xp41 = x| X}, = 2)
z€S

= Z?T(Z)P(z,x)

z€S
= m(x)
By induction, the proof is completeﬂ O

Definition 3.2. Consider a Markov Chain {X,,n = 1,2,3,...} with state
space S. A probability m on S is called a steady state of the chain if

lim P"(z,y) =n(y), forallz €S
n—r00

Lemma 3.2. Let m be a steady state distribution of the Markov chain. Then,
for any initial distribution m,

lim P(X, = y) = (y)

n—oo

Proof. Let mo(x) = p(xo = ). Then,

P(X, =y) =Y mo(x)P"(x,y)

zes
nl;r{:o PX,=y) = nhﬁngo ZSTFO(;L')P”(:L',y)
Sy

zeSs
= Z 7o () nhngo P"(x,y)
zeS
= (Z m(@) m(y) = 7(y)
€S

ISince 7P = 7, 7 is the eigenvector of the matrix P whose eigenvalue is 1.
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O

Example 3.1.1. Let {X,,n =0,1,2,...} be a two state Markov chain with
S =1{0,1} and P = (1) (1)) Since 7P = 7 for any , any distribution is a
stationary distribution.

0 1

Example 3.1.2. If P = (1 0

), 7= (1/2 1/2) is the only stationary distri-

bution.

Example 3.1.3. Let P = (1 ;p . f q). To find the stationary distribution,

we must solve

g 1-g¢
Then, we get
(1 =p)7(0) + (1) = 7(0)
pm(0) + (1 — g)w(1) = =(1)
Therefore,
{w<0> =L
m(l) = p%q
Note that

A _p—_ _rp P _ _p—_ _p_
Pn: (p—(‘,]—q+(]‘ p q):pj]_q p_zt,)_q (1 p q)Zp.(l,I_q>
it A R R Sl e

As n — oo, we get
9 _p_
<p+q p+q>
49 _p_
p+q  ptq
Therefore, we conclude that this is both stationary and steady state distribution.

Example 3.1.4. Consider a Markov chain characterized by the following tran-
sition matrix:
P— 1/4 3/4
—\1/3 2/3

Clearly, the chain is more likely to be at state 1 than 0. Then, we have

p(Xnon(O)?)/L/f’l/gfg
P(anl)ﬁ—m):?m:g
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Example 3.1.5. Let {X,,,n =0,1,2,...} be a Markov chain with S = {0, 1,2}

and
1/2 1/2 0

P=[1/3 1/3 1/3
0 1/2 1/2

Find the stationary distribution of the chain.
First, let 7 = (7(0),7(1),7(2)). Since 7P = 7, we have

w(0) + %W(l) (0)
m(0) + 3m(1) + i7(2) = =(1)
m(1) + $7(2) = 7(2)

W NI D=

Then, we find that
m=(2/7,2/7,3/7)

Example 3.1.6. Let {X,,,n =1,2,3,...} be a Birth-death Markov chain with
S =1{0,1,2,...,d} and

To Do 0 0
G Tt P 0 =

t 0 dn—-1 Tn—1 Pn-—1
0 DRI O qn ‘r‘n

Find the stationary distribution of the chain.
Once again, we use the fact that 7P = 7. Then, we end up with the following
set of linear equations:
rom(0) + qim(1) = 7(0)
pom(0) + r17(1) + gam(2) = 7 (1)

pr—1m(k — 1) + rpm(k) + qeam(k+ 1) = w(k)

pd—17(d — 1) + rp,m(d) = w(d)
First, we observe that (1) = L2 (0). Then, we have

por(0) + (1 — p1 — q1)7(1) + gom(2) = 7(1)
pom(0) — p17(1) — 1 (1) + gam(2) (1)
g2m(2) = p1m(1)

™
™

Then, we have
P P1Po
= —m(1)

a2 q2q1

(0)



By recursion, we have
(k) = PoP1 - Pk-1

q192 - gk
Since 7(0) + (1) + -+ - + w(d) = 1, we have

7r 7(0)

1=7(0) + Za(0)n(1) + 27 (0) + - 4 PP
o q14q2 q1--qd
d
Po- - Pi—1
1=7(0) [14+) =———=
1
w(0) = _—
Po-Pi—1
I+ e
Therefore,
(k) = ‘11dq2~~qk
Do Pi—
L+ Y e

Remark. If d = oo, the birth-death chain has a unique stationary distribution

iff
d .

ZPO"'pz—l < 00

~ @
Example 3.1.7. Suppose we have d balls in each of the two urns. Total number
of red balls is d (total number of blue balls is also d). Let X be the number of
red balls in total in urn 1. We pick a ball from each urn at random and switch.
Then, X; will be the number of red balls after first switching. We want to find
P and find its stationary distribution.

P(i,1) occurs when we pick red balls or red balls from both urns. Then,

.. i(d—1)
P(i,i) = ZT
Likewise, we have
. (d—i)? _, . i2
P(Z,Z+1) = T,P(l,l_l) = ﬁ

Note the boundary conditions:

P(0,0) =0,P(0,1) = 1,P(d,d) = 0, P(d,d — 1) = 1.
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Finally, we can write the transition matrix:

0 1 0 ... 0

1 2(d—1)  (d—1)2 0

e T az TaE
]P):

0 0 1 0

Since this chain is equivalent to birth-death Markov chain, we know that

PopP1 -+ Pr—1
7T(k) _ q192 - - - gk
1+§:p0"'m—1
i=1 q1°°"4q;
Observe that
bo Pk—1 _ P(Ovl)P(172) P(kf lak)
d> (d—1)? (d— (k—1))?
2 P a2
N 1 22 k2
~(dd—-1)---(d—k+1))?
B (1-2---k)2

Then,

() 2 () - (068 - ()

Therfore,

3.2 Positive recurrence

We introduce a new notation:

My = By[Te] =Y kP(T, = k|Xo = x),
k=1

where T, = min{n > 1, X,, = z}.
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Definition 3.3. Let x be a recurrent state. If m, < oo, then x is called positive
recurrent. If m, = oo, then x is called null recurrent.

Theorem 3.1. If x is transient, then m, = oco.

Proof. Tf x is transient, p;, < 1. In other words, P,(T, = 00) = 1 — pzp > 0.
Therefore,

My =Y kP(Ty = k|Xo =) > 00 Pp(T, = 00) = 00
k=1

Recall that

G(nmy) =E, [N(y)] =E;

Y Iy (Xn)l = P(z,y).

For any n > 1, let
Nn(y) = Zl{y} (Xk) <n
k=1

Gn(x’y) =E; [Nn(y)} = Zpk(x’y)

k=1
Theorem 3.2.
1. Ify is transient, then
lim ) =0, lim (z,y) =0
n— 00 n n—r00 n
for all .
2. If y is recurrent, then
N, I{T, :
n—o0 n my n—oo n my

Corollary. Let C be an irreducible set of recurrent states. Then,
Gn(z,y)

Ny,
lim ————* = lim ()

n—00 n n—00 n

1
= — Vz,yeC
My

Theorem 3.3. If x is positive recurrent and x — vy, then y is positive recurrent.
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Proof. If x is positive recurrent and x — y, then = <> y. In other words, there
exists ny > 1,ng > 1 such that P"'(z,y) > 0, P"2(zy) > 0. Observe that

Pn1+n+n2 (y, y) Z Pnz (y, x)Pn(x7 .T)Pnl (:E, y)

Observe that,

n

ZP"1+"+"2+k(y,y) > P2 (y, z)
k=1

Then,

n+ni+nz

n
S PMyy) =) PrttR(yy)
m=ni+no+1 k=1
ni1+n2 ni+nsg n+mni+nsz
== > P'yy)+ Y Pyy)+ Y, Py
m=1 m=1 m=ni+nz+1
- Gn+n1 +ng (:% y) - Gn1 +no (ya y)
> P (y,2)Gp(x,2)P™ (z,y)

Then,

Gn+n1 +ng (ya y) B Gn1+n2 (ya y) Gn (.%, ‘T)

n

> P"(y,x) P (z,y)

Since Gy 4n, (¥, y) = 0 as n — oo, we havtﬂ

1 1
— = P"(z,y) P (y,2)— >0
my My

If m, is finite, then m, must be finite as well. O

Theorem 3.4. Let C be a finite irreducible set of recurrent states. Then, every
state in C is positive recurrent.

Proof. Clearly, given z € C,

Zpk(x,y) =1,

yeC

2 Above result is derived from the following:

lim Cmatmedn (n1+n2 + )Gy tnytn _ 1. L

n— o0 n n— o0 n(nl +n2 Jrn) my
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for all positive integer k. Then,

n:ZZPn(xay)

k=1yeC

=> ) PHa,y)

yeC k=1

= Z Gn(x7y)

yel

Furthermore,

Z GTLvay) -1

yel
. Gn(z,y)
— nh_)]fr;<> Z —= =1
yeC
Gn b
= Y lim Gnl@y) _
n—o00 n
yel

Now, it follows that there exists z € C such that

i Gn(z,y) S

n—00 n

0,
implying that m, < oo and z is positive recurrent. Since every state in C
communicated with z, every state in C' is positive recurrent. O

Remark. Let {X,,,n = 1,2,...} be a Markov chain with finite state space S.
Then, all recurrent states are positive recurrent.

Theorem 3.5. Let m be a stationary distribution of a Markov chain. If y is
transient or null recurrent, then w(y) = 0.

Proof. Let m be a stationary distribution of the chain. Then, P(X}, = y) = 7(y)
if the initial distribution is 7. Then,

P(Xk :y) ZP(XO ES,Xk zy)
=Y P(Xo=z,X,=y)

zeS

= Z P(Xo = 2)P(Xx = y|Xo = )
z€eS

=" w(@)PH(z,y) = 7(y)
€S
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Then, we get

A
Y
I

| =
N
g
A

&

Y

>
W

S

[
(]

3|
(]
2
N
"
o
B
S

zeS k=1

=) Pra)
zeS k=1

Gn(7,y)

=) ()

2 @)=
Thus,
(y) =t 3 () )

O

Example 3.2.1. Does a Markov Chain with no positive recurrent states have
a stationary distribution?

Let m be a stationary distribution. By theorem m(y) =0forally € S.
This yields a contradiction and a Markov Chain with no positive recurrent states
cannot have a stationary distribution.

Theorem 3.6. An irreducible positive recurrent Markov Chain has a unique
stationary distribution given by

m(x) = —

Example 3.2.2. Does a finite state Markov Chain have a stationary distribu-
tion?

Consider the following decomposition of the state space:
C=CrUCr
=CprUCr
=CiU---uC; UCr

Each Cj is an irreducible positive recurrent class. By the theorem, there is a
stationary on each C;. Then,

{ﬂ',(m) = mim xz € C;
m(x)=0 x¢C;

is a stationary distribution.



Example 3.2.3. When does a finite state Markov Chain have a unique sta-
tionary distribution?

All recurrent states must communicate.

Example 3.2.4. Can a finite state Markov Chain have exactly two stationary
distributions?

Assume w9, o are two different stationary distributions:
7T1P = 7T1,7T2]P) = T2

Then, for any 0 < A < 1, Am 4+ (1 — A)mo is also a stationary distribution.
Therefore, a Markov Chain cannot have exactly two stationary distributions.

Theorem 3.7. Let {X,,n = 0,1,2,...} be a Markov Chain with state space
S. Let N denote the nnumber of stationary distributions of the chain. Then,

0  if there is no positive recurrent state
N =<1 if there is one irreducible positive recurrent class

oo else

Example 3.2.5. Consider the Birth-Death Markov chain. If

Po- " Pz—1
a1 Qx

< 00,

then there is a stationary distribution. This condition is in fact equivalent to
positive recurrence of a chain.

Previously, we have shown that an irreducible Birth-Death Markov Chain
with X ={0,1,2,...} (1) is recurrent iff

oo

GG
—prpe

= 00,

and (2) has a unique stationary distribution iff

© ...

Z Po- - Pz—1 < oo,
=G

These results lead to following theorems:

Theorem 3.8.

1. The chain is transient iff
> PR
Z a1z < 00
— P1° Pz

33



2. The chain is null recurrent iff
i DRI i ...
Z 14z = o0, ZPO Pz—1 —
—p1 s o

8. The chain is positive recurrent iff

i DREY

Z Po- - Pz—1 < 00

=1 q1° " qx

Example 3.2.6. A Birth-Death Markov Chain with p, = ¢, = a is null recur-
rent.

Example 3.2.7. A Birth-Death Markov Chain with p, = p and ¢, = ¢. Notice

that
o0 o0
I
i pe T\P
o0 o0
ZPO"'Pmlzz<p>
—1 q1 Qg p— q

Clearly, if p # ¢, one of them will converge and the other will diverge. Thus,
when p > ¢, the chain is transient and when p < ¢, the chain is positive
recurrent.
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4 Long time behaviour

4.1 Period of a state

Definition 4.1. Let I be a set of positive integres. The greatest common divisor
of I, denoted by ged(I) is defined as

ged(I) = min{n, nlm for all m € I}
Definition 4.2. The period of a state x is defined as
d, = ged{n : P"(z,z) > 0}

Example 4.1.1. Let S = {1,2,3}. Consider

12 1/2 0
P=(1/2 1/3 1/3
12 1/3 0

Since P2(3,3) > 0 and P3(3,3) > 0, its period is 1.

Example 4.1.2. Consider

0
P=1{0
1

O O =
o = O

Clearly, 1 — 2 — 3 — 1. Therefore, period of 1 is 3.

Example 4.1.3. Consider a pure birth Markov chain with P(z,z 4+ 1) = 1.
Then, dy = oco.

Definition 4.3. A state x is called periodic if d, = 1.

Theorem 4.1. Let I, = {n > 1: P"(x,x) > 0}. By definition, d, = gcd I,. If
1e€l,, thend, = 1.

Example 4.1.4. Consider a Markov Chain characterized by the following tran-
sition matrix:

0 1 0
P=[1/2 0 1/2
0 0 1

Find the period of each state.

1. For x = 0, we have Iy = {2,4,6,...} because 0 — 1 — 0. Therefore,
do = 2.

2. For ¢ = 1, we have Iy = {2,4,6,...} for a similar reason. Therefore,
dy = 2.
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3. For z = 2, notice that 2 is an absorbing state. Since 2 — 2, we have
1 € I5. Therefore, do = 1.

Theorem 4.2. If x <>y, then d, = dy.

Proof. Let
I,={n>1:P"(z,x) >0},

Iy={n=>1:P"(y,y) =0}

Since x ¢ y, there exists n; > 1,ns > 1 such that P"* (z,y) > 0 and P! (z,y) >
0. Thus, P™1+72 > (.

Since n1 + ng € I, d, is a divisor of n; + no. For any m € I, we have
P™(y,y) > 0. Then,

Pttt (g x) > P (z,y) P (y, y) P (y,2) > 0

This implies that ny +ny +m € I.. Since d, is a divisor of ny + ny +m and of
n1 +ng, it is follows that that d, is also a divisor of m. Thus, d, < d,,. Likewise,
we can prove that d, < d,. Therefore, d, = d,. O

Recall that we can decompose any state space as follows:
(Uchr)u(UChr)ucr
i J
By the previous theorem, we can conclude that each class has exactly one period.

4.2 Long time behaviour

Theorem 4.3. If y is null recurent, then

lim P"(x,y) =0

n—oo
for all .

Theorem 4.4. If {X,,,n=0,1,...} is an irreducible positive recurrent Markov
chian with period d,

1. If the chain is periodic, then

lim P"(z,y) = (y)

n—oo

2. If the period of the chain is greater than or equal to 2, then for any x,y € S
there exists an integer 0 < r < d such that

lim P (2, y) = dr(y)

m—r o0

Further, P"(x,y) =0 if n # md +r.
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Theorem 4.5 (Long time behaviour).
0 if y is transient or null recurrent

Am Pz, y) = 7{(373(3,)

0 else

if y is positive recurrent and d, =1

=md
forn=md+r if poy = 1,y is PR, and dy > 2

Example 4.2.1. Consider a Markov chain characterized by the following tran-
sition matrix:

0 1 0
P=[1/2 0 1/2
0 0 1

Then,
0 ify=0,1
1 ife=y=2

n—oo

lim P"(z,y) = {

Example 4.2.2. Let {X,,n = 0,1,2} be a Markov chain with S = {1,2,3,4}
and

1/2 1/2 0 0

P 1/6 1/2 1/3 0

o 1/2 1/2 1/6

0 0 1/2 1/2

Find lim,, o P™.
We want to compute

prP*(1,1) P™(1,2) P™(1,3) P"(1,4)
pr _ | P7(2,1) Pr(2,2) P7(2,3) PT(2,4)
| P31 Pr(3,2) PR(3,3) P(3,4)
P™(4,1) P™(4,2) P"(4,3) P"(4,4)

First, notice that
1-2—=-3—=-4—-1

so all state communicate with each other. Since we have finite state space, we
have one close, irreducible, positive recurrent class. Also, we have

dy =ged{n>1,P"(1,1) >0} =1

since P*(1,1) = 1/2 > 0. Since all states are positive recurrent and have period
of 1, we can conclude that

lim P"(z,y) = n(y)

n—oo

for all states in S. Therefore,

1/8 3/8 3/8 1/8
e P | 1/8 3/8 3/8 1/8
nos | 1/8 3/8 3/8 1/8
1/8 3/8 3/8 1/8
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Example 4.2.3. Let {X,,n = 0,1,2} be a Markov chain with S = {1,2,3,4}
and
0 1 0 0

p_ |13 0 23 0
0 0 1 0

Find lim,,_,o P?" and lim,,_, o, P21

Clearly, this chain is irreducible and positive recurrent. We also know that
its stationary distribution is given by

(1331
T=\88'88

dy = ged{n >1,P"(1,1) > 0}
= gcd{2,3,6,...}
=2

Observe that

So there must exist r such that lim, ., P™(z,y) = dn(y) for n = md + r.
Notice that P?"*1(1,1) = 0. Then, we must have

1nn_P2"uql)::2ﬂ(1)::1.

n—oo 4

Likeiwse, we have P?"(2,1) = 0. Therefore, we must have

1
lim Pﬁ”*4(2,1)::2ﬁ(1)::1.

n—oo

Therefore, we can conclude that

1/4 0 3/4 0
0 3/4 0 1/4
1/4 0 3/4 0
0 3/4 0 1/4
0 3/4 0 1/4
1/4 0 3/4 0
0 3/4 0 1/4
1/4 0 3/4 0

P2n N

]P>2n+l N

Example 4.2.4. Let {X,,,n =0, 1,2} be a Markov chain with S = {0,1,2,...}
and

To Po 0 0
g 1 p1 O
P=10 @ rn p
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Clearly, we have

de 1 if r; > Ofor at least one 4
]2 else

Example 4.2.5. Let {X,,,n =0,1,2,...} be a Markov chain with finite number

of states.
Assume that the chain is irreducible and each column of P add up to 1. Find
the stationary distribution of the chain.
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5 Continuous Time Markov Chain

In this section, we will still be looking at at most countable state space. However,
we introduce a new concept:

Definition 5.1 (Waiting time). Starting from state x, you wait at x for 7,
until the next “jump” occurs. In discrete time Markov chain, 7, was fixed but
m continuous time, T, is a random variable.

In order to satisfy the Markov property, waiting time must follow the expo-
nential distribution, the only random variable with memoryless property.
5.1 Exponential distribution

Definition 5.2 (Exponential distribution). A random variable X that follows
an exponential distribution has the following properties:

1. X>0
2. f(x) = e ™
3. Elz]=1/A

We observe that if A is large, the waiting time becomes shorter. If A goes to
infinity, waiting time will go to zero. On the other hand, if A goes to 0, waiting
time will go to infinity. These are two boundary cases.

Example 5.1.1. Let X, X5 be two independent exponential random variables
with respective parameters: Aj, As. Set X = min(X;, Xz). Then, X is expo-
nential with parameter A = A\; 4+ Ao

Proof. Notice that
PX<z)=1-P(X >z
:1—P(m (Xl,X2)>.’E)
=1-P(X1>2z,X,>1)
21—P(X1>$) (X2>J3)

Az

Since CDF of an exponential distribution is F(z) =1 — e~ **, we get

— P(Xl > l‘)P(XQ > l‘) =1- (1 — F,\l(.%‘))(l - F)\z(l‘))
—1— €7>\1z67)\2m

— 1 _ e—(A1+)\2)w

Therefore, X follows an exponential distribution with parameter A\ = \; +
Ao O
Theorem 5.1. Let X1, Xo,..., X, be independent exponential random vari-

ables. Let X = min(Xy, Xa,...,X,). Then, X is a exponential random variable
with parameter A =X i + o+ -+ + A\,
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Recall that the Markov property is defined as the following;:
P(Xn = xn|Xn71 =Tn—-1,--- ;XO = 1170) = P(Xn = xn‘anl = xnfl)
How does this apply in the continuous case?

Definition 5.3. For any n > 1, let zg,z1,...,2, € S. Then, the Markov
property is defined as the following:

P(X;, = xp[Xo =20,..., X7, , = 2p-1) = P(X5, = 20| X, | = 2n1)
We now introduce a new notation. For any 0 < s < ¢, and z,y € S, we have
P(s,t,x,y) = Pyy(s,t) = P(X, = y| Xs = 2)

Definition 5.4. Let T = [0,00) and S be a finite or countable set. The stochas-
tic process is given by {Xi,t € T} = {Xy,t > 0}. Then,

1. The distribution of X is called the initial distribution of the process,
denoted by .

2. The process {X;,t > 0} is continuous time Markov chain if for any n >
1,3)0,371,...,37” € 570 <t <--- <tn}

P(th = xn|Xt0 = ZQy-- - ,Xt"71 = xn—l) = P(th = l‘n|th71 = Jﬁn_1)

3. The Markov chain {X,t > 0} is time homogeneous if for any t,s € T,
P(Xiys =y|Xs =2) = P(X; = ylzg = x)
4. For time-homogeneous Markov chain, P, (t) = P(X; = y|Xo = ) is
called the transition function of the chain.
5. A state x is absorbing if P(X; = x|zo =) =1 for all t.
1 ifz=
- Oay = {0 eJ;se ’
7. Q = (Qquy) is a transition probbability matriz such that Qze = 0.
—¢z  ifr=y
Quey fxFyY

Theorem 5.2. Let {X;,t > 0} be a homogeneous continuous time Markov
chain with waiting time distribution {exp(q ), € S} and transition probability
Q. Then, we have

8. For each x € S, let g > 0. Set qzy = {

1. Chaphen-Kolmogorov Equation:

Pwy(t + S) = Z Py, (t)sz(S)
z€S
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2. Backward Equation:
= qu:Puy(t) < P(t) = AP,
z€S
where A = (¢zy)-
Proof. For any x,y € S and t,s € T, we have

Ppy(t + s) = P(Xp4s = y|Xo = 2)
= P(X¢ys =y, Xt € S|Xo =12)
N P(Xt+s = y,Xt S S,XO = l’)

P(Xo = CL‘)
ZZGS PXyrs =9y, Xy =2, X0 =1x)
P(Xp =1x)
PXyys =9y, Xe =2, Xo=2) P(Xy =2, Xo =)
Z PX;=2Xo=1) P(Xy=1x)

= Z (Xtys =yl Xo =2, Xt = 2)P(Xy = 2|z = )

Z (Xtys =yl Xt = 2)P(Xy = z|wg = )
z€S

= Z P.,(s)
z€S8

This proves the first statement.
Now, we prove the second statement:

Ppy(t) = P(Xy = y|Xo = 2)
= P(Tl > t,Xt = y|X0 = fE) +P(’7'1 < t,Xt = yIXO = ZL’)

no jump occurs

:(5myP(T1 >t)+P(T1 St,Xﬁ 751',Xt :y|X0 :.’E)
———

e—axt
= Gpye T + Z P(r <t, X, #x,X; =2|Xg=2x)
zH#T
*(;ryeiqdL +Z/ qz€ T sz zy( )
z#x

- 6$y6_qmt +/ qz€ T ZQLEZ zy t_ S)d

zH#T

t
= Gyt 4 / Goe™ = 7 Q, Py (u)du
0

ZF#x

—ag.t _
:6J;ye qz +e gzt / eqT § Q.Lz Zy

ZH#x
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Then, we get

t
Pl (1) = —gpe 0" |6,y + /0 G S Qo Py ()| + 42 S Qe Py (1)

zH#T zZH#T
zF£x
z#x
= Z qgcszy (t)
Now, this completes the proof. O

So the matrix A determines the existence of Markov chain and is analogous
to transition matrix in discrete time Markov chain. Notice that ) provies the
Jumping mechanism and ¢, provides the waiting mechanism. So the matrix
A, which is a combination of ¢, and @, is fundamental in continuous Markov
chains.

What happens if we let ¢ — 07 We get

Pa/vy(o) = Z Gz P=y(0)

z€S
We can consider two cases here:
Ly=z Pp,0) =t = G-
2. y#x. Ppy(0) = quy-

Now, notice that A = g, is not a transition matrix. We can first look at
some of its properties:

® |guy € [0,00]
o ¢y >0fory#ua, ¢y <0fory=ux
b Zy QIy = 0

Let’s take a look at an example:

Example 5.1.2. Consider the following matrix:

—-100 60 40
A= 10 -20 10
1 1 =2

If we start from state 1, we are very likely to move to other states (notice that
the magnitude of A;; is large). If we start from state 3, we are not as likely to
move to other states. This directly translates to waiting time.
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Also, we notice that As; = Asg and A3y = Aszo. This implies that you are
equally likely to move to any other states if you start from either state 2 or 3.
On the other hand, A2 > A;3. So if you start from state 1, you are more likely
to move to state 2 than 3.

Let’s go back to Champhen-Kolmogorov equation:

Pry(t+h) = Pro(t)Pey(h)
z€S
We can then divide both sides by h

Poy(t+h) = Puoy(t) _ Socs Pz (t)Pay(h) = Poy (1)
h h

As we let h — 0, we get the forward equation.
P;y = ZPIZ(t)qu
z

Example 5.1.3 (Poisson process). Consider

A A 0 0 O
0O =X X 0O
A=10 0 -x XA 0
Find the distribution of X;.
First, notice that
P(X;=0)= Py(t)
= P(’Tl > t)
=1- P(T1 < t)

=1-(1—e M) =M

Then, by using the forward equation, we can compute Po(X; = 1) = P{,(¢):

P(;l(t) = Z POz (t)qzl

z€S
= Pyo(t)go1 + Po1(t)gnn
= APyo(t) — APp1(t)

Solving the differential equation, we get

P01 (t) = )\te”‘t.
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By induction, we find that

¢
eAtPon(t):/ )\e)‘sPo(n,l)(s)ds
0

n A n—1
:/ )\e)\s( S) : e—/\sds
0 n-—

(A"

n!

Therefore, we get

)™
POn(t) = ( ’I’L') ei)\t

Example 5.1.4. Consider a Markov chain with state space S = {0,1} where
= <—>\ A >
o i

In this example, we can use the backward equation. First, observe that

Péo(t) = Z qOZPZO(t)

z€S
= qooPoo(t) + qo1Pro(?)
= —APoo(t) + APio(t)

Find Py, (t) for z,y € S.

Likewise, we have

Pllo(t) = Z QIszO(x)

z€S
= q10Poo(t) + g1 Pio(t)
= puPyo(t) — pPro(t)

Combining the two equations, we get
Foo(t) = Plo(t) = =(A+ ) (Poo(t) — Pro(t))-
Solving the differential equation, we get
Poo(t) — Pro(t) = e= 1!
Then, we have

P(So(t) = */\Poo(t) + )\(Poo(t) _ 67(A+u)t)
= —)\e_()\"!‘ﬂ)t
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Integrating,
t
Poo(t) - PO()(O) = 7)\/ 67()\+#)Sd5
0

= A (1- e_o‘ﬂ‘)t)

_A+u
A
Poo(t) — 1= ——2—(1 — e~ Atmt
= Pyo(t) >\+N( € )
H A e
— P t :7—1—7 f
o0(?) A+ /\+ue
Lastly, we have
I B~
P, = — — 12
10(t) A+ )\+ue

Example 5.1.5 (Birth-death continuous time). We can write a general in-
finitesimal matrix for continuous time birth-death Markov chain as follows:

—Xo Ao 0 0
p1 — (A4 ) A1 0
A= 0 2 —(A2+p2) Ao

Example 5.1.6. Consider

BN

|
cocoo
cocoo
cocoo
cocoo

Then, we get Poo(t) = ].,P55(t) = ].,P17(t) =0.

Example 5.1.7 (Branching process). Each individual will wait an exponential
time with parameter A > 0 independently. At the end of the waiting time,
the individual will produce 2 offsprings with probability p or no offsprings with
probability 1 — p. Let X; be the total number of individuals at time t.

It is clear that S = {0,1,2,...}. First, we know that goo = 0 because if
you have no population, it will stay at 0 forever and no offsprings will not be
produced. Then, it directly follows that gg; = 0 for all 7 > 0.

Now, we look at ¢g11. Since we have only one individual whose waiting time
has parameter A, we have ¢g;; = —A. Using the probabilities given, we get
qi0 = (1 —p)A and g2 = pA.

Notice that each individual has an independent waiting time distribution.
So two individuals cannot have identical waiting time so p(r; = 7;) = 0 for all
1 # j where 7; is the waiting time of an individual. So you can either go to state
x 4+ 1 (produce 2 offsprings) or # — 1 (produce 0 offsprings) given that you're
at state x. Now, we want to compute g,,. Notice that the jump will happen
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when the first person out of x individuals produces offsprings. So we want the
minimum time of n waiting times. By theorem [5.1} we know that the minimum
waiting time is an exponential distribution with Az. So we get ¢, = —Ax.
Then, it directly follows that g, z+1 = Azp and ¢ .—1 = Az(1 — p).

Example 5.1.8 (Infinite server Queueing model). Customers arrive for ser-
vice according to a poisson process with parameter A. Each customer will be
served after arrival. The serving then follows exponential with parameter p. All
services are independent.

Then, we want to look at the transition matrix, ). Notice that a customer
arrives at a rate A and any of the customers can be served at a per customer
rate p. Then, clearly, the probability of going from z to x4+ 1is A/(A+ zu) and
the probability of going from x to z — 1 is xu/(A + xu), where z is the number
of customers.

So we can write hte infinitesimal matrix as follows:

—Xo Ao 0
Ao | et A) M

Example 5.1.9 (Pure birth Markov Chain). For pure bith Markov Chain, we
have p,, = 0 for all . Then, the forward equation is given by

P;y(t) = Z sz (t)QZy

z€S
= Pry—1)()ay—1)y + Poy(t)ayy
= w(y—l)(t))‘y—l - Aypzy(t)

Therefore, we get
P;y(t) = = Ay Puy(t) + Ay—1Pi(y-1) (1)

Now, we want to solve this system of equation.
If y < @, then P,y (t) = 0.
If y = 2, then we have Ay _1Py(;—1)(t). Thus, we have

Pa/ca:(t) = */\zprr(t)
— P! (t)=e 2t P,(0)=1

Ify=x2+1, we get

Pac(;c-l—l) (t) = _A:chlPa:(x-&-l) (t) + )\xpmx(t)
= _)\z+1Pm(r+1) (t) + )\xe_)\mtv

which yields
;(T'i‘l) + )\:E+IP1(J,+1) = Amef)‘a:t.
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Integrating, we get

Pty = At At = A
z(z+1) Awﬁihe—xmt (e(A1+1]—>\m)t —1), A1 # Ao

Lastly, if y > z + 1, we get
PLy() = =Xy Py (t) + Ay Pt H ()
Mt (Pl (1) + Ay Pay (1)) —>\y 1Pac(y n(t)e
(X" Py ()" = Ay Pay—1) (1)

t
e Pay(t) = Ay /O eMIP, 1 (s)ds.

This is the general pure birth process.

Example 5.1.10 (Pure birth). Pure birth happens when p, > 0 and A, =
This relates to a biological process called Coalescent Markov Chain.

Example 5.1.11 (Yule Process). Yule process is a linear growth Markov chain
were A\, = ax, where a > 0. Essentially, it is a special type of Pure Birth
process. So let’s find the solution.

When y < z, we get Py (t) = 0.

When y = z, we get Py, (t) = e,

When y =z + 1, we get

A
P t) = x =Xzt =gyt
z(w+1)( ) )\eril A (6 e )

=z (e_“t)x (1 — e_“t) .

When y = x + 2, we get

By induction, we get

y—1
y—x

Poy(t) = ( ) (eo1)" (1= o)V "

This is negative binomial!
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5.2 Recurrent and transient states

Definition 5.5 (Hitting time). Let {xr,t > 0} be continuous time Markov
Chain with S. For any y € S, let 7y denote the waiting time before the first

Jump, and set
T, =inf{t > : X; = y}.

From now on, we denote p,, = P(T, < 0o|Xy = ).

Definition 5.6 (Transient and recurrent states). A state x is transient iff pye <
1. x is recurrent iff pe. = 1.

Theorem 5.3. Let 71,7a,... be the jump times of {X¢,t > 0}. Set y, =
X, . Then, {yn,m = 0,1,...} is a discrete time Markov Chain with one-step
transition probability matrix P = @, where

0, ify==x
Qa: = - .
To% ify#e
{yn,n € N} is called the embedded Markov Chain of {X;,t > 0}.

Theorem 5.4. A state is recurrent or transient under {X;,t > 0} iff x is
recurrent or transient under {y,,n € N}.

Remark. If S is finite, then S = Cr UCr and at least one recurrent class exists.

Definition 5.7 (Stationary Distribution). m(x) is a stationary distribution of
a Continuous Time Markov Chain iff P(t) = 7 for every t.

Equivalently, by differentiating, we obtain the following expression:
7P’ (0) = 0.

Theorem 5.5. A distribution 7 is stationary iff TA =0 or Y 7(x)qey =0 for
zeS
ally e S.

Example 5.2.1. Counsider a continuous time Markov Chain, {X;,¢t > 0} with

S =1{1,2}. Let
-1 1
A= (—10 10)

Then, the transition matrix can be found by solving the following system of
linear equations:
-1 1
.52 (35 o) =0

7= (10/11,1/11)

So we get

Definition 5.8 (Mean return time). m, = Y__ (T).
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Definition 5.9 (Positive recurrent). A state x is positive recurrent iff m, < oo.

Remark. The positive recurrenct set under {X;, ¢ > 0} is different from the
positive recurrent set under {y,,, m > 0}.

Theorem 5.6. Stationary distribution is concentrated on positive recurrent
states only.

Theorem 5.7. Absorbing state is positive reccurent. If x is non-absorbing and
positive recurrent, then the stationary distribution on the irreducible closed set
containing x 18

1
m(x) =
q[l/‘mflj

5.3 Continuous time Birth-Death Markov Chain

Clearly, pure birth Markov Chain is transient. On the other hand, pure death
is not actually recurrent. In this case, we have to write S = {0} U{1,2,3,...},
and {0} is the only irreducible and recurrent set.

Now, consider a case where A\, > 0,u, > 0. The chain is irreducible. To
understand the behaviour, we have to study the embedded chain, {Y;, = X },
whose transition matrix is given by

0 1 0 -
u u
P= (@ = /1«1+1>\1 /J«2+2>\2 0

Recall that a birth-death Markov Chain is transient iff )~ T'; < co. So in
this case, the chain is transient iff

o0 pa pa B3 ... __fin

Z (A1tp1) Aatp2) (As+us) Ot 1im)
A1 Ao A3 L. An

n=1 (Ai+p1) A2+p2) (Az+us) (An+pn)
oo

B l’l’llu/Q P ,U/n < %

Mg A,

n=1

By checking at this criteria, we can test whether the chain is recurrent or not.

Now, let’s look at the stationary distribution. Recall that stationary distri-
bution, 7, is given by solving wA = 0. Then, we get the following set of linear
equations:

“Aom(0) + (1) = 0
Aom(0) — (A1 + pa)m (1) + pam(2) = 0
)\17‘1’(1) — ()\2 + /,1/2)71—(2) + /1,37'('(3) =0

An—1m(nl) = (A + po)7(n) + ppgam(n +1) =0
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Solving this recursively, we get

A AoA AoALA
7(1) = 27 (0), 7(2) = 217 (0), w(3) = 2222
M1 M1 2 Hipapt3
In general, we have
Xo- A\
mn+1) = ——7(0)
'LLO “ee /’Ln+1
Then, we have
- Ao | AoA
> w(n) = (0) [1+°+ e
n=0 H1 H12

So we can solve this iff the term within the bracket is finite. In other words, the
chain is positive recurrent iff

o0
DV
270 n1<oo.
M1

n=1

Example 5.3.1. Consider a continuous time Markov Chain with

oo oo
Since ) £=f= = %7 1 = oo, the chain is recurrent. Likewise, we can check the
n=1 ! i n=1
second criteria to find out that this is null recurrent. Then, we get limy;_, oo Pyy(t) =

0 for all state x,y € S.

Example 5.3.2. Consider a continuous time birth-death Markov Chain with
Az =1 and p, = 1+ 1/2. Then, we still get a null recurrent chain.

Example 5.3.3 (Infinite Server Queue). Consider a birth-death Markov chain
with A\, = A and pu, = az. Determine the transient, null recurrent, and positive
recurrent states.

First, notice that this is an irreducible Markov Chain. Then, we have
i Ao An_1
n:1 l’l’l PRI ﬂn

5 ey
= n!
=Mt -1 < .

So this chain is positive recurrent.
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Further, we get

Ao Az—1
“pr Ap)?*
n(z) = e S
IS 0" " Ap_1 x!
1+, —
> =1 H1 e fn
Example 5.3.4 (Finite server queue). Consider a birth-death Markov chain
with
Ao = Ay = azx ?fx<N
aN ifxz>N
First, notice that
i L2 77
n—1 >\1 '>\n
N-1 [eS)
:Zﬂl"'un_~_ﬂl"'ﬂN71 BN - pn
M A AL AN_1 AN A
n=1 n=N

Since the first term is finite, we just have to consider the second term:

0o aN n—(N-1)
- (%)
n=N
o] ( aN) m+1
m=0 A
Therefore, this chain is recurrent iff aNVA > 1.
Likewise, we have

o0

= AN A

f:)\O"')\n—l

n=1 H177THn

:Nfl Ao A1 Aoc - An—s i ()\>nN+1
ey N1 2 aN

:N—l Ao An_i N A0 An_2 i()\>k
ol 0 Y U S 0 AR U B Bt aN

In conclusion,

alN < A\ transient
alN > A positive recurrent

aN = A null recurrent

Example 5.3.5. Counsider a birth-death Markov chain with A, = 1/(z+1) and
e = 1. This chain is positive recurrent because as x grows large, you are more
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likely to come back. More precisely, we have

Aot Ane < 1
Z¥:Zﬁ

n=1 N n=1
1
=Y n=0—-1
n!
o0
=e—1<

Example 5.3.6. Consider a birth-death Markov chain with g, =1 and A, =
1-1/(x+2)=(x+1)/(x +2). Then, we have

‘X’)\...)\n_ e 1
Z¥:Zn+2:oo

ot Ml...un 1

00
|2 2%
n=1 >\1 )\n
Zn+2
= =0
n=1 2

So this chain is null recurrent.

93



	Introduction
	Review
	Stochastic processes

	Markov chains (Discrete time Markov chains)
	Markov property
	Transition function and initial distribution
	Joint distribution
	Recurrence
	Absortion probabilities
	Birth-Death Markov Chain
	Branching process

	Stationary distribution
	Stationary distribution
	Positive recurrence

	Long time behaviour
	Period of a state
	Long time behaviour

	Continuous Time Markov Chain
	Exponential distribution
	Recurrent and transient states
	Continuous time Birth-Death Markov Chain


