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1 Introduction

1.1 Review

Definition 1.1 (Independent random variables). X and Y are independent iff
for any a, b ∈ R, P (X ≤ a, Y ≤ b) = P (X ≤ a)P (Y ≤ b)

1.2 Stochastic processes

Definition 1.2 (Stochastic process). Let T be a subset of [0,+∞]. For each
t ∈ T , let Xt be a random variable. Then, the collection of {Xt : t ∈ T} is called
a stochastic process. Simply put, a stochastic process is just a family of random
variables.

Example 1.2.1. Let T = {0}. Then, {X0} is a stochastic process.

Example 1.2.2. Let T = {1, 2, 3, . . . ,m} be a set of finite natural numbers.
Then, {X1, X2, X3, . . . ,m} is a stochastic process.

Example 1.2.3. Let T = {0, 1, 2, . . . } be a set of all non-negative integers.
Then, {X1, X2, X3, . . . } is a stochastic process.

Example 1.2.4. Let T = [0,+∞) be a set of all non-negative real numbers.
Then, {Xt : t ≥ 0} is a stochastic process.

Definition 1.3 (Time index). Let T be time index. If T = {0, 1, 2, . . . }, then
the time is discrete. If T = [0,∞), then time is continuous.

Definition 1.4 (State Space). State space, S, is the space space where the
random variable takes the values.

Given a sample space, S, and time index t ∈ T , we can define Xt(w) ∈ S,
to describe a stochastic process. Here, {Xt : t ∈ T} describes the dependence
relation.

We can further categorize a stochastic process by considering the following
two cases: countable and uncountable state space. Time index can also be
categorized as follows: discrete and continuous time. Note that each stochastic
process must belong to one of the four categories.

Remark. Every stochastic process can be described by the following three fac-
tors:

1. Time index

2. State space

3. Dependence relation

Example 1.2.5. Let S = {0, 1} and T = {0, 1, 2, . . . }. Given,

Xn =

{
1 with probability of 1/2

0 with probability of 1/2

{X0, X1, X2, . . . } is a stochastic process and is often noted as Bernoulli trials.
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2 Markov chains (Discrete time Markov chains)

We will only be dealing with discrete time Markov chains in chapter 1 and 2. In
other words, T = {0, 1, 2, . . . }. It follows that the state space, S, will be at most
countable. Finally, Markov describes the dependence relation: X0, X1, X2, . . . .

In example 1.2.5, every trial of the Bernoulli trials was independent. On the
other hand, in a Markov model, Xn+1 depends on Xn but not on any past stats,
X1, X2, . . . , Xn−1.

2.1 Markov property

Definition 2.1. Markov property can be expressed as follows:

P (Xn+1 = xn+1|X0 = x0, . . . , Xn−1 = xn−1, Xn = xn)

= P (Xn+1 = xn+1|Xn = xn)

P (Xn+1 = y|Xn = x) is noted as the transition probability and it describes
the one step transition from x to y starting at time n. If

P (Xn+1 = y|Xn = x) = P (X1 = y|X0 = x) ,

then the Markov chain is called to have stationary transition, or homogeneous.

Definition 2.2. Let {Xn : n = 0, 1, 2, . . . } be a homogeneous Markov chain.
Then,

Pxy = P (X1 = y|X0 = x) = P (Xn+1 = y|Xn = x) ,

is the one-step transition probability.

Definition 2.3. Following the definition 2.2, we can now define one-step tran-
sition matrix:

P = (Pxy)x,y∈S

Remark. Given, X0, π0(x) = P (X0 = x) is called the initial distribution.

Given a Markov chain, we wish to answer the following fundamental ques-
tions:

1. Distribution of Xn for any n ≥ 1.

2. Join distribution of Xn1
, . . . , Xxk

for any 1 ≤ n1 < n2 < · · · < nk k,≥ 2.

3. Long time behaviour, i.e.

lim
n→∞

P (Xn = x)

Example 2.1.1. We have the following Markov chain: {Xn : n = 0, 1, 2, . . . }
where S = {0, 1}. For this model, its initial distribution can be described as
follows: {

π0(0) = P (X0 = 0) = a

π0(1) = 1− a
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Transition probabilities can be written in a similar fashion:

P (X1 = 1|X0 = 0) = p, P (X1 = 0|X0 = 0) = 1− p
P (X1 = 0|X0 = 1) = q, P (X1 = 1|X0 = 1) = 1− q

where 0 ≤ p, q ≤ 1. For this Markov chain, we can consider the following three
cases:

Case 1. p = q = 0.

This case is trivial.

Case 2. p = q = 1.

This case is also trivial.

Case 3. 0 ≤ p+ q ≤ 2.

P (Xn+1 = 0) = P (Xn+1 = 0 ∩Xn = 0) + P (Xn+1 = 0 ∩Xn = 1)

= P (Xn = 0)P (Xn+1 = 0|Xn = 0) + P (Xn = 1)P (Xn+1 = 0|Xn = 1)

= P (Xn = 0)(1− p) + P (Xn = 1)q

= P (Xn = 0)(1− p) + (1− P (Xn = 0))q

= (1− p− q)P (Xn = 0) + q

We can further expand this as follows:

P (Xn+1 = 0) = (1− p− q)P (Xn = 0) + q

= (1− p− q)
[
(1− p− q)P (Xn−1 = 0) + q

]
+ q

= (1− p− q)nP (X0 = 0) + q

n−1∑
j=0

(1− p− q)j

Note that
n−1∑
j=0

(1− p− q)j =
(1− p− q)n − 1

(1− p− q)− 1

Therefore, we have

P (Xn+1 = 0) = (1− p− q)na+ q
(1− p− q)n − 1

(1− p− q)− 1

= (1− p− q)na− q

p+ q

(
(1− p− q)n − 1

)
For this Markov chain, we find that

lim
n→∞

P (Xn = 0) =
q

p+ q
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2.2 Transition function and initial distribution

Example 2.2.1.
Pxy = P (Xn+1 = y|Xn = x)

= P (X1 = y|X0 = x)

Definition 2.4. Transition function, P (x, y) : S × X → [0, 1], satisfies the
following conditions:

1. P (x, y) ≥ 0.

2.
∑
y∈S P (x, y) = 1 for all x ∈ S.

Definition 2.5. Given a transition function, P (x, y), a transition matrix is
defined as follows:

P = (P (x, y))x,y∈S

Example 2.2.2. (
1 0
0 1

)
Example 2.2.3. 1/4 1/2 1/4

1/8 1/4 5/8
0 1/4 3/4


Definition 2.6. Initial distribution is a probability mass function (pmf) that
is defined as follows

π0(x) = P (X0 = x).

Note that it must satisfy the following conditions:

1. π0(x) ≥ 0

2.
∑
x∈S π0(x) = 1

Theorem 2.1. Let {xN : n = 0, 1, 2, . . . } be a Markov chain with initial dis-
tribution π0(x), and one-step transition matrix P = (P (x, y))x,y∈S. Then, the
distribution of Xn is

P (Xn = xn) =
∑
x0∈S

∑
x1∈S

· · ·
∑

xn−1∈S
π0(x0)P (x0, x1) . . . P (xn−1, xn)

= π0 PP . . .P︸ ︷︷ ︸
n

Proof. For any n ≥ 1, xn ∈ S

P (Xn = xn) = P (Xn = xn, x0 ∈ S,X1 ∈ S, . . . ,Xn−1 ∈ S)

=
∑
x0∈S

∑
x1∈S

· · ·
∑

xn−1∈S
P (Xn = xn, X0 = x0, . . . , Xn−1 = xn−1)
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Note that

P (Xn = xn, X0 = x0, . . . , Xn−1 = xn−1)

= P (X0 = x0)P (X1 = x1|X0 = x0)P (X2 = x2|X0 = x0, X1 = x1)

· · ·P (Xn = xn|X0 = x0, . . . , Xn−1 = xn−1)

Using the Markov property, it is evident that the equation above is equivalent
to P (X0 = x0)P (X1 = x1|X0 = x0) · · ·P (Xn = xn|Xn−1 = xn−1).

Example 2.2.4. Simple random walk is a Markov chain:

X0 = 0

X1 =

{
1 p

−1 q

X2 =

{
X1 + 1 p

X1 − 1 q

Xn =

{
Xn−1 + 1 p

Xn−1 − 1 q

where S = {0,±1,±2, . . . }.

Example 2.2.5 (Ehrenfest chain). Suppose that we have a box and a inivisble
bar that divides the box into region I and II. d balls are placed in a box. Initially,
n balls are distributed in region I and d − n balls are distributed in region II.
You pick a ball at random. If it’s from region I, you put it back in region II. If
it’s from region II, you put it back in region I.

First, note that this Markov chain has a state space of S = {0, 1, 2, . . . , d}.
We observe that

P (0, y) =

{
0 y > 1

1 y = 1

P (1, y) =


0 y 6= 0, 2
1
d y = 0

1− 1
d y = 2

In general, we have

P (x, y) =


0 y 6= x± 1

1− x
d y = x+ 1

x
d y = x− 1

Combining these results, we have the following transition matrix:
0 1 0 . . .
1
d 0 1− 1

d
. . .


(d+1)×(d+1)
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Example 2.2.6 (Birth-Death Markov chain). At each time step, one person
can die and a new person can be born:

Xn+1 =


px y = Xn + 1

qx y = Xn − 1

rx y = Xn

0 else

Example 2.2.7 (Queuing chain). At each time step, one customer is served
and new customers arrive:

Xn+1 =

{
yn+1 if Xn = 0

Xn − 1 + yn+1 if Xn ≥ 1

We introduce a new notation, x+ = x ∨ 0, which is essentially max(x, 0).
Using this notation, we can rewrite the Markov chain as follows

Xn+1 = (Xn − 1)+ + yn

Example 2.2.8 (Branching Markov chain). If X0 = 0, then Xn = 0 for all
n ≥ 1. We call 0 an absorbing state.

Suppose X0 ≥ 1. An individual, i, will produce yi number of offsprings at
each generation. Then, we will have

X1 = y
(1)
1 + · · ·+ y

(1)
X0

Each individual in generation 1 will also produce offsprings. Then,

X2 = y
(2)
1 + · · ·+ y

(2)
X0

We wish to understand how the population will evolve over time. To do so,
we can look at the expected value. It’s clear that the population will grow if
E[y] > 1. On the other hand, if E[y] < 1, the population will eventually die
out.

Example 2.2.9 (Wright-Fisher Markov chain). For this Markov chain, we start
by make the following assumptions:

1. The population size is fixed.

2. No generation overlap.

Within the population, there are N number of individuals of two types: I
and II. Let X0 be number of type I individuals at time 0. Each individual
in generation 1 pick its parent from generation 0 at random. This process is
equivalent to repeating Bernoulli trials N times (also equivalent to binomial).
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Therefore, we have

X1 ∼ Bin(N,
X0

N
)

X2 ∼ Bin(N,
X1

N
)

...

Xn+1 ∼ Bin(N,
Xn

N
)

2.3 Joint distribution

Given a Markov chain with π0 and P, how do we find (1) the distribution of Xn

and (2) the joint distribution of Xn and Xm where n < m?
From the previous section, recall that πn = π0 PP . . .P︸ ︷︷ ︸

n

.

Example 2.3.1. Consider the following transition matrix:

P =


1/2 1/2 0 0
0 1/2 1/2 0
0 0 1/2 1/2
0 0 0 1


Supose that π0 = (1, 0, 0, 0). Then, we have

π1 = (1, 0, 0, 0)P = (1/2, 1/2, 0, 0)

π2 = (1, 0, 0, 0)PP = (1/4, 1/2, 1/4, 0)

Eventually, all states will converge to the absorbing state and stay there.

To find the join distribution, we first note that

P (Xn = x,Xm = xm) = P (Xn = xn)P (Xm = xm|Xn = xn)

= P (Xm = xm)P (Xm−n = xm|X0 = xn)

Definition 2.7. For any interger m, m-step transition matrix is given by

Pm(x, y) = P (Xm = y|X0 = x).

When m = 0, we have

P 0(x, y) =

{
1 y = x

0 y 6= x

We can decompose m-step transition matrix as follows:

Pm(x, y) = P (Xm = y|X0 = x)

= P (Xm = y, x1 ∈ S, . . . ,Xm−1 ∈ S|X0 = x)

=
∑
x1∈S

∑
x2∈S

· · ·
∑

xm−1∈S
P (x0, x1) . . . P (xn−1, y)

9



Then, we have

P (Xm = y) = P (Xm = y,Xm ∈ S)

=
∑
x0∈S

P (Xm = y,X0 = x0)

=
∑
x0∈S

P (X0 = x0)Pm(X0, y)

=
∑
x0∈S

π0(x0)Pm(X0, y)

Therefore, we have
(P (Xm = xm))xm∈S = π0Pm

Definition 2.8 (Hitting time). Given A ⊂ S, hitting time TA is defined as
follows:

Ta = min{n ≥ 1 : Xn ∈ A}

If A = {x}, then we have Tx = Tx. Note that

• TA ≥ 1

• If xn /∈ A for all n ≥ 1. we have TA = +∞

Now, we wish to understand the distribution of Ty given thatn X0 = x.
First, note that we have

Px(Ty = 1) = P (Ty = 1|X0 = x) = P (x, y)

Similarly, we have

Px(Ty = 2) = Px(x1 6= y, x2 = y)

=
∑
w 6=y

P (x,w)P (w, y)

Generally, we have

Px(Ty = n+ 1) = Px(x1 6= y, . . . , xn 6= y, xn+1 = y)

=
P (X0 = x,X1 6= y . . .Xn 6= y,Xn+1 = y)

P (X0 = x)

=
P (X0 = x,X1 6= y)

P (X0 = x)

P (X0 = x,X1 6= y . . .Xn 6= y,Xn+1 = y)

P (X = x,X1 6= y)

=
∑
x1 6=y

P (x, x1)Px1
(Ty = n)

Note that the last result follows from the Markov property.

Lemma 2.1. Pm(x, y) =
m∑
k=1

Px(Ty = k)Pm−k(y, y)
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Proof.

Pm(x, y) = P (Xm = y|X0 = x)

= P (Xm = y, Ty ≤ m|x0 = x)

=

m∑
k=1

P (Xm = y, Ty = k|X0 = x)

=

m∑
k=1

P (X0 = x, Ty = k,Xm = y)

P (X0 = x)

=

m∑
k=1

P (X0 = x, Ty = k)

P (X0 = x)

P (X0 = x, Ty = k,Xm = y)

P (X0 = x, Ty = k)

=

m∑
k=1

Px(Ty = k)P (Xm = y|X0 = x, x 6= y, xk = y)

=

m∑
k=1

Px(Ty = k)P (Xm = y|xk = y)

2.4 Recurrence

Before we define recurrent and transient states, we introduce the following no-
tation:

ρxy = Px(Ty ≤ ∞) =
∑
k

Px(Ty = k).

Definition 2.9 (Recurrent and Transient states). A state x is called recurrent
if ρxx = 1. Ohterwise, it is called transient.

We introduce more notations:

• Ix(y) =

{
1 y = x

0 else
(indicator function of x).

• N(y) =
∞∑
n=1

Iy(Xn)

Theorem 2.2.

1. Px(N(y) ≥ m) = ρxyρ
m−1
yy

2. Px(N(y) = m) = ρxyρ
m−1
yy (1− ρyy)

3. Px(N(y) = 0) = 1− ρxy
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Proof. First, assume that theorem 1 is true. Then, we have

Px(N(y) = m) = Px(N(y) ≥ m)− Px(N(y) ≥ m+ 1)

= ρxyρ
m−1
yy − ρxyρmyy

= ρxyρ
m−1
yy (1− ρyy)

Now, we want to prove theorem 3:

Px(N(y) = 0) = 1− Px(N(y) ≥ 1)

= 1− ρxy

Finally, we just have to prove theorem 1:

Px(N(y) ≥ m) = Px(The Markov chain visits state y at least m times)

=
∑
n1≥1

· · ·
∑
nm≥1

Px(Ty = n1)Py(Ty = n2) · · ·Py(Ty = ny)

=
∑
n1≥1

Px(Ty = n1)
∑
n2≥1

Py(Ty = n2) · · ·
∑
nm≥1

Py(Tynm)

= Px(Ty <∞)Py(Ty <∞) · · ·Py(Ty <∞)

= ρxyρ
m−1
yy

Before looking at the next theorem, we introduce another notation: Ex[·] is
the expectation given the initial state of x. Then, we have

Ex[Iy(Xn)] = Px(Iy(Xn) = 1)

= Px(Xn = y)

= Pn(x, y)

Furthermore, we introduce the notation, G:

G(x, y) = Ex[N(y)]

= Ex

[∑
y

Iy(xn)

]
=
∑
y

Ex[Iy(xn)]

=
∑
y

Pn(x, y)

Theorem 2.3.

1. If y is transient, then for any x ∈ S, Px(N(y) < ∞) = 1 and G(x, y) =
Pxy

1−Pyy
<∞.
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2. If y is recurrent, then for any x ∈ S, Px(N(y) =∞) = 1 and G(y, y) =∞.
Furthermore, we have Px(N(y) =∞) = ρxy and

G(x, y) =

{
∞ if ρxy > 0

0 if ρxy = 0

Proof. Suppose y is transient. Then, we have ρ < 1. For any x, we have

Px(N(y) =∞) = Px

( ∞⋂
m=1

{N(y) ≥ m}

)
= lim
m→∞

Px(N(y) ≥ m)

= lim
m→∞

ρxyρ
m−1
yy

= 0

Therefore, we have

Px(N(y) <∞) = 1− Px(N(y) =∞) = 1− 0 = 1

Furthermore,

G(x, y) =

∞∑
m=1

mPx(N(y) = m)

=

∞∑
m=1

mρxyρ
m−1
yy (1− ρyy)

= ρxy(1− ρyy)

∞∑
m=1

mρm−1yy

= ρxy(1− ρyy)

( ∞∑
m=1

ρmyy

)′
= ρxy(1− ρyy)

1

(1− ρyy)2

Let’s prove the second statement. If y is recurrent, then ρyy = 1. For any
x, we have

Px(N(y) =∞) = Px(
⋂
{N(y) ≥ m})

= lim
m→∞

Px(N(y) ≥ m)

= lim
m→∞

ρxyρ
m−1
yy

= ρxy
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Then, we have

G(x, y) =
∑

mρxyρ
m−1
yy

=
∑

mρxy

= ρxy
∑

m

=∞

Example 2.4.1. Let y be a transient state. Find

lim
n→∞

Pn(x, y).

Recall that G(x, y) =
∑∞
n=1 P

n(x, y) =
ρxy

1−ρyy
< ∞. Since the series con-

verges, it is easy to see that lim
n→∞

Pn(x, y) = 0

Example 2.4.2. Let {Xn, n ≥ 0} be a two state Markov S = {0, 1}. Can both
be transient?

We start by noting that Px(Xn ∈ S) = 1. If both are transient, we have

lim
n→∞

Px(Xn ∈ S) = lim
n→∞

Pn(x, 0) + Pn(x, 1) = 0,

yielding a contradiction.

Definition 2.10. A Markov chain is recurrent if all states are recurrent, and
the chain is transient of all states are transient.

Definition 2.11. A state x leads to state y of ρxy > 0 denoted x→ y.

Remark. It is possible that x 6→ x.

Lemma 2.2.

1. x→ y iff there exists n ≥ 1 such that Pn(x, y) > 0.

2. If x→ y and y → z, then x→ z.

Proof. By definition, x → y ifff ρxy > 0. In other words, Px(Ty < ∞) > 0.
Then,

0 < Px(Ty <∞) =

∞∑
n=1

Px(Ty = n) ≤
∞∑
n=1

Pn(x, y)

Therefore, Pn(x, y) > 0 for some n. Conversely, if Pn(x, y) > 0 for some n ≥ 1,
we can define

n0 = min{n ≥ 1, Pn(x, y)}.
Clearly, 0 < Pn(x, y) ≤= Px(Ty = n0) < ρxy.

To prove the second statement, note that x → y iff ∃n1 ≥ 1 such that
Pn1(x, y) ≥ 0. Similarly, y → z iff ∃n2 ≥ 1 such that Pn2(y, z) ≥ 0. Then,

Pn1+n2(x, z) ≥ Pn1(x, y)Pn2(y, z) > 0

Therefore, x→ z
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Theorem 2.4. If x is recurrent and x → y, then y is recurrent and ρxy =
ρyx = 1.

Proof. To yield contradiction, suppose ρyx 6= 1. Then,

1− ρy > 0.

Furthermore, if x → y, there exists n1 such that Pn1(x, y) > 0. This implies
that

Pn1(x, y)(1− ρyx) > 0

The first part is the probability that x reaches y in n1 steps. However, the
second part says that y never goes to x, contradicting the assumption that x is
recurrent. Therefore,

ρyx = 1.

To prove that y is recurrent, we first note that if x→ y, there exists n1 such
that Pn1(x, y) > 0. Similarly, if ρyx = 1, y → 1 and there exists n2 such that
Pn1(y, x) > 0. Then,

G(y, y) =

∞∑
n=1

Pn(y, y)

≥
∞∑
m=1

Pn1+n2+m(y, y)

≥
∞∑
m=1

Pn2(y, x)Pm(x, x)P x,y

= Pn2(y, x)

( ∞∑
n=1

Pm(x, x)

)
︸ ︷︷ ︸

G(x,x)=∞

Pn1(x, y)

Finally, to prove that ρxy = 1, we note that y is recurrent. Then, by following
the proof of the first statement, we can prove that ρxy = 1.

Definition 2.12. If x→ y and y → x, we write

x↔ y

and say that x communicates with y

Definition 2.13. A subset C is closed if for any x ∈ C and y /∈ C, x 6→ y
(ρxy ≤ 0).

Definition 2.14. A closed subset C is irreducible if every x, y ∈ C communi-
cate with each other.
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We can further define closed and irreducible set where (1) x, y ∈ C, x ↔ y,
and (2) x ∈ C, z /∈ C, ρxz = 0. Closed, irreducible, and recurrent set is then
defined as (1) x, y ∈ C, x↔ y, ρxy = ρyx = 1, and (2) x ∈ C, z /∈ C, ρxz = 0.

Then, we can decompose a state space, S, into a set of recurrent and transient
state:

S = CR ∪ CT

Theorem 2.5. If for x, y ∈ CR, Cx ∩ Cy 6= ∅. Then, Cx = Cy.

Proof. Let w ∈ Cx ∩ Cy. Then, w ↔ x and w ↔ y. For any z ∈ Cx, we have

z ↔ x↔ w ↔ y

and
z ∈ Cy,

implying that Cx ⊂ Cy. By symmetry, Cy ⊂ Cx. Therefore, Cx = Cy.

Theorem 2.6. The state space S of a Markov chain can be decomposed as two
union of CR and CT . Furthermore, CR can be decomposed into the union of at
most countable number of closed, irreducible, recurrent sets.

Note that you have to stay in a recurrent set if you start from a recurrenut
set. On the other hand, if you start from a transient set, you have to move to
a recurrent state if the set contains finite elements. If the set contains infinite
number of elements, it is possible to stay in the transient set forever.

Example 2.4.3. Let {Xn, n = 0, 1, 2, . . . } be a Markov Chain with S =
{0, 1, 2, 3, 4, 5} and the following one step transient matrix:

P =


1 0 0 0 0 0

1/4 1/2 1/4 0 0 0
0 1/5 2/5 1/5 0 1/5
0 0 0 1/6 1/3 1/2
0 0 0 1/2 0 1/3
0 0 0 1/4 0 3/4


(a) Find CR and CT

Note that 0 is an absorbing state. If you start from state 1 or 2. you have a
positive probability of going to state 0. Therefore, state 1 and 2 are transient.
On the other hand, we have 3→ 4→ 5→ 3, implying that

3↔ 4↔ 5.

Then, {3, 4, 5} form a closed, irreducible, and recurrent state. Therefore,

CR = {0, 3, 4, 5}
CT = {1, 2}

16



(b) Decompose CR

Clearly, CR = {0} ∪ {3, 4, 5} and two subsets are irreducible.

Remark. All closed, irreducible, finite set are recurrent set.

Example 2.4.4. Let S = {0, 1, 2, 3, . . . }. Given the following transition matrix,

R =


1 0 0 0 · · ·
0 1 0 0
0 0 1 0
...


Then, each state is an absorbing state and we have

CR =

∞⋂
i=0

{i}.

Example 2.4.5. Consider the following transtion matrix:

R =

0 1 0
0 0 1
1 0 0


Then, since 1→ 2→ 3, we have

CR = {1, 2, 3}

Example 2.4.6. Consider the following transition matrix:

R =

0 1 0
0 0 1
0 0 1


Then, we have CT = {1, 2} and CR = {3}.

Example 2.4.7. Consider the following transition matrix:

R =

0 1 0
a 0 1− a
0 0 1


For all 0 ≤ a < 1, decomposition of the state space does not change. Higher a
only implies that it will take longer to get to the absorbing state.
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2.5 Absortion probabilities

Definition 2.15 (Absortion probabilities). Let C be a recurrent, irreducible,
closed set. For x ∈ CT , probability of x being abosrbed by C is given by

ρC(x) = ρx(Tc <∞)

To calculate the absortion state, we must solve

ρC(x) =
∑
y∈C

P (x, y) +
∑
y∈CT

P (x, y)ρC(y).

This is in fact a system of linear equations. We are interested the uniqueness of
the solution.

Theorem 2.7. If CT is finite, then the system

wx =
∑
y∈C

P (x, y) +
∑
y∈CT

wy

has a unique solution wx = ρC(x).

Proof. Let {wx : x ∈ CT } be any solution. Then,

wx =
∑
y∈C

P (x, y) +
∑
y∈CT

P (x, y)wy

=
∑
y∈C

P (x, y) +
∑
y∈CT

P (x, y)

∑
z∈C

P (y, z) +
∑
y∈CT

P (y, z)wz


=
∑
y∈C

P (x, y) +
∑
y∈CT

∑
z∈CT

P (x, y)P (y, z)wz +
∑
y∈CT

∑
z∈C

P (x, y)P (y, z)

=
∑
y∈C

P (x, y) +
∑
z∈CT

P 2(x, z)wz +
∑
y∈CT

∑
z∈C

P (x, y)P (y, zsss)

= Px(TC ≤ 2) +
∑
z∈CT

P 2(x, z)wz

= · · ·

= Px(Tc ≤ n) +
∑
z∈CT

P 2(x, z)wz

Now, we can take the limit as n goes to infinity:

wx = lim
n→∞

(
Px(Tc ≤ n) +

∑
z∈CT

P 2(x, z)wz

)
= Px(Tc ≤ ∞) +

∑
z∈CT

lim
n→∞

Pn(x, z)wz

Since CT is finite, lim
n→∞

Pn(x, z) = 0, and therefore, wx = Px(Tc ≤ ∞).
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Example 2.5.1. Let {Xn, n = 0, 1, 2, . . . } be a Markov chain with S = {1, 2, 3, 4}
and

P =


1 0 0 0

1/4 0 3/4 0
0 1/3 1/3 1/3
0 0 0 1


Let C = {1}. Find ρC(2), ρC(3)

First, note that we can decompose the set as follows:

CR = {1, 4}, CT = {2, 3}

Since CT is finite, we have

wx =
∑
y∈C

P (x, y) +
∑
y∈CT

P (x, y)wy

Then, we have
wx = P (3, 1) + P (2, 2)w2 + P (2, 3)w3

=
1

4
+

3

4
w3

Similarly, we have

w3 =
1

3
w2 +

1

3
w3

Therefore, we have

w3 =
1

5
, w2 =

2

5

Theorem 2.8. If for any x, y ∈ S, x↔ y, then the chain is irreducible. Then,
it follows that a finite state of irreducible Markov Chain is recurrent.

Remark. Infinite, irreducible Markov chain can be transient. Irreducibility
doesn’t imply recurrence.

Then, when will an inifinite state, irreducible Markov chain be reccurent?
We look at the birth-death Markov chain to understand this idea.

2.6 Birth-Death Markov Chain

Definition 2.16. A Markov Chain {Xn, n = 1, 2, . . . } is called a birth-death
Markov chain if

1. S = {0, 1, 2, . . . , d} where d can be either finite or infinite. When d =∞,
S = {0, 1, 2, . . . }.

2. P (x, y) =


px y = x+ 1

qx y = x− 1

rx y = x

0 else

.
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Note that if px > 0, qx > 0, for 1 ≤ x ≤ d − q and p0 > 0, qd > 0, then the
chain irreducible. If the chain is irreducible and d < ∞, then the birth-death
chain is recurrent.

Theorem 2.9. For any a, b ∈ S and a < b. Let u(x) = Px(Ta < Tb) for
a ≤ x ≤ b, u(a) = 1, u(b) = 0. Also, define

Γ0 = 1,Γk
q1q2 · · · qk
p1p2 · · · pk

, k ≥ 1

Then,

u(x) =

∑b−1
r=x Γr∑b−1
r=1 Γr

Proof. First, note that

u(x) =Px(Ta < Tb)

=Px(x1 = x or x+ 1 or x1 = x− 1, Ta < Tb)

=Px(x1 = x, Ta < Tb) + Px(x1 = x+ 1, Ta < Tb)

+ Px(x1 = x2, Ta < Tb)

=Px(x1 = x)Px(Ta < Tb) + Px(x1 = x+ 1)Px+1(Ta < Tb)

+ Px(x1 = x− 1)Px−1P (Ta < Tb)

=rxu(x) + pxu(x+ 1) + qxu(x− 1)

Rearranging, we get

(1− rx)u(x) = pxu(x+ 1) + qxu(x− 1)

(px + qx)u(x) = pxu(x+ 1) + qxu(x− 1)

px(u(x+ 1)− u(x)) = qx(u(x)− u(x− 1))

Now, we can use this formula recursively:

u(x+ 1)− u(x) =
qx
px

(u(x)− u(x− 1))

=
qx
px

qx−1
px−1

(u(x− 1)− u(x− 2))

=
qx
px
· · · qa+1

pa+1
(u(a+ 1)− u(a))

=

q1···qa
p1···pa
q1···qa
p1···pa

qx
px
· · · qa+1

pa+1
(u(a+ 1)− u(a))

=
Γx
Γa

(u(a+ 1)− u(a)).

By definition, we know that u(b) = 0 and u(a) = 1. It is then trivial that
u(b)−u(a) = −1. Finally, we can apply telescoping to achieve the desired result:

−1 = u(b)− u(b− 1) + u(b− 1)− u(b− 2) + · · ·+ u(a+ 1)− u(a)

=
Γb−1
Γa

(u(a+ 1)− u(a)) +
Γb−2
Γa

(u(a+ 1)− u(a))

+ · · ·+ (u(a+ 1)− u(a))
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Thus, we have

u(a)− u(a+ 1) =
Γa∑b−1
r=1 Γr

If we put everything together, we have

u(x)− u(x+ 1) =
Γx
Γa

(u(a+ 1)− u(a))

=
Γx∑b−1
r=1 Γr

for all a < x < b.
Finally, since u(x) = u(x)− u(b), we can apply telescoping again:

u(x) = u(x)− u(x+ 1) + u(x+ 1)− u(x+ 1) + · · ·+ u(b− 1)− u(b)

=

∑b−1
r=x Γr∑b−1
r=a Γr

We have now derived a major result for the birth and death Markov chain.

Lemma 2.3. ρ00 = P (0, 0) + P (0, 1)ρ10.

Proof.
ρ00 = P0(T0 <∞)

= P0(X1 = 0, T0 <∞) + P0(X1 = 1, T0,∞)

= P0(X1 = 0) + P (0, 1)P1(T0 <∞)

= P (0, 0) + P (0, 1)ρ10

Theorem 2.10. The birth and death Markov chain is recurrent iff
∞∑
r=0

Γr =∞.

Proof. Let a = 0, b = n, and x = 1. Observe that

u(1) = P1(T0 < Tn) =

∑n−1
r=1 Γr + Γa − Γa∑n−1

r=0 Γr
= 1− 1∑n−1

r=0 Γr
.

Then, since

ρ10 = P1(T0 <∞) = lim
n→∞

P1(T0 < n) = lim
n→∞

(
1− 1∑n−1

r=0 Γr

)
.

Clearly, ρ10 = 1 iff
∞∑
r=0

Γr = ∞. When ρ10 = 1, we have ρ00 = P (0, 0) +

P (0, 1) = 1 and 0 becomes a recurrent state. Since the chain is irreducible, it is
reccurent.
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Example 2.6.1. Consider a birth-death Markov Chain whose state is a set of
all non-negative integers. For each state, it has a probability of going up of 0.51
and probability of going down of 0.49. Then,

Γr =
q1 · · · qr
p1 · · · pr

=

(
0.49

0.51

)r
Clearly,

∞∑
k=0

Γk is a converging geometric series. Therefore, this is a transient

Markov Chain.

Example 2.6.2. Cnosider the following chain:

P (x, y) =



p0 x = 0, y = x+ 1

0 x = 0, y = x− 1

r0 x = 0, y = 0

px x ≥ 1, y = x+ 1

rx x ≥ 1, y = x

qx x ≥ 1, y = x− 1

We may define

px =
x+ 2

2(x+ 1)
, qx =

x

2(x+ 1)
.

Then, it follows that px + qx = 1 and rx = 0.
We wish to know if this Chain is transient or not. First, observe that

Γ1 =
q1
p1

=
1

3

In general, we have

Γx =
q1 · · · qx
p1 · · · px

=

1
2(1+1)

2
2(2+1) · · ·

x
2(x+1)

1+2
2(1+1)

2+2
2(2+1) · · ·

x+2
2(x+1)

=
1 · 2 · · ·x

(1 + 2)(2 + 2) · · · (x+ 2)

=
1 · 2

(x+ 1)(x+ 2)
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Then, we see that

∞∑
x=0

Γx = Γ0 + Γ1 +

∞∑
x=2

Γx

= 1 +
1

3
+ 2

∞∑
x=2

(
1

(x+ 1)(x+ 2)

)
= 1 +

1

3
+ 2

(
1

x+ 1
− 1

x+ 2

)
= 1 +

1

3
+

2

3
= 2 <∞

Therefore, this chain is transient.

2.7 Branching process

In the branching process, offspring of each individual follows a distribution ψ
whose probability mass is given by P (x). Then, we have

Xn+1 =

Xn∑
i=1

ψn+1
i

with X1 = ψ1
1 . We will be looking at the case where 0 < P (0) < 1 and

P (0) + P (1) < 1.
For this Markov Chain, state space is defined as S = {0, 1, 2, . . . }, and 0 is

the absorbing state. Since all the other states are transient, we define ρ as the
probability of extinction.

Definition 2.17. Let µ = E[ψ]. The model is called subcritical if µ < 1; critical
if µ = 1; supercritical if µ > 1; and explosive if µ =∞.

Theorem 2.11. ρ = 1 iff µ ≤ 1.
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3 Stationary distribution

3.1 Stationary distribution

Definition 3.1. Consider a Markov Chain {Xn, n = 1, 2, 3, . . . } with state
space S. A probability π on S is called a stationary distribution of the chain if∑

x∈S
π(x)P (x, y) = π(x), for all x ∈ S,

where P = (P (x, y)) is the one-step transition matrix.

Lemma 3.1. If π0 = π, then P (Xn = x) = π(x) for all n.

Proof. If n = 0, π0 = π. Now, assume n = k is true. Then,

P (Xk+1 = x) = P (Xk = S|Xk+1 = x)

=
∑
z∈S

P (Xk = z)P (Xk+1 = x|Xk = z)

=
∑
z∈S

π(z)P (z, x)

= π(x)

By induction, the proof is complete1.

Definition 3.2. Consider a Markov Chain {Xn, n = 1, 2, 3, . . . } with state
space S. A probability π on S is called a steady state of the chain if

lim
n→∞

Pn(x, y) = π(y), for all x ∈ S

Lemma 3.2. Let π be a steady state distribution of the Markov chain. Then,
for any initial distribution π0,

lim
n→∞

P (Xn = y) = π(y)

Proof. Let π0(x) = p(x0 = x). Then,

P (Xn = y) =
∑
x∈S

π0(x)Pn(x, y)

lim
n→∞

P (Xn = y) = lim
n→∞

∑
x∈S

π0(x)Pn(x, y)

=
∑
x∈S

lim
n→∞

π0(x)Pn(x, y)

=
∑
x∈S

π0(x) lim
n→∞

Pn(x, y)

=

(∑
x∈S

π0(x)

)
π(y) = π(y)

1Since πP = π, π is the eigenvector of the matrix P whose eigenvalue is 1.
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Example 3.1.1. Let {Xn, n = 0, 1, 2, . . . } be a two state Markov chain with

S = {0, 1} and P =

(
1 0
0 1

)
. Since πP = π for any π, any distribution is a

stationary distribution.

Example 3.1.2. If P =

(
0 1
1 0

)
, π =

(
1/2 1/2

)
is the only stationary distri-

bution.

Example 3.1.3. Let P =

(
1− p p
q 1− q

)
. To find the stationary distribution,

we must solve (
π(0) π(1)

)(1− p p
q 1− q

)
=
(
π(0) π(1)

)
Then, we get

(1− p)π(0) + qπ(1) = π(0)

pπ(0) + (1− q)π(1) = π(1)

Therefore, {
π(0) = q

p+q

π(1) = p
p+q

Note that

Pn =

( q
p+q + (1− p− q)n p

p+q
p
p+q − (1− p− q)n p

p+q
q
p+q − (1− p− q)n q

p+q
p
p+q + (1− p− q)n q

p+q

)
As n→∞, we get ( q

p+q
p
p+q

q
p+q

p
p+q

)
Therefore, we conclude that this is both stationary and steady state distribution.

Example 3.1.4. Consider a Markov chain characterized by the following tran-
sition matrix:

P =

(
1/4 3/4
1/3 2/3

)
Clearly, the chain is more likely to be at state 1 than 0. Then, we have

P (Xn = 0)→ = π(0) =
1/3

3/4 + 1/3
=

4

13

P (Xn = 1)→ = π(1) =
3/4

3/4 + 1/3
=

9

13
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Example 3.1.5. Let {Xn, n = 0, 1, 2, . . . } be a Markov chain with S = {0, 1, 2}
and

P =

1/2 1/2 0
1/3 1/3 1/3
0 1/2 1/2


Find the stationary distribution of the chain.

First, let π = (π(0), π(1), π(2)). Since πP = π, we have
1
2π(0) + 1

3π(1) = π(0)
1
2π(0) + 1

3π(1) + 1
2π(2) = π(1)

1
3π(1) + 1

2π(2) = π(2)

Then, we find that
π = (2/7, 2/7, 3/7)

Example 3.1.6. Let {Xn, n = 1, 2, 3, . . . } be a Birth-death Markov chain with
S = {0, 1, 2, . . . , d} and

P =



r0 p0 0 · · · 0
q1 r1 p1 0 · · ·

...
. . .

· · · 0 qn−1 rn−1 pn−1
0 · · · 0 qn rn


Find the stationary distribution of the chain.

Once again, we use the fact that πP = π. Then, we end up with the following
set of linear equations:

r0π(0) + q1π(1) = π(0)

p0π(0) + r1π(1) + q2π(2) = π(1)

· · ·
pk−1π(k − 1) + rkπ(k) + qk+1π(k + 1) = π(k)

· · ·
pd−1π(d− 1) + rnπ(d) = π(d)

First, we observe that π(1) = p0
q0
π(0). Then, we have

p0π(0) + (1− p1 − q1)π(1) + q2π(2) = π(1)

p0π(0)− p1π(1)− q1π(1) + q2π(2) = π(1)

q2π(2) = p1π(1)

Then, we have

π(2) =
p1
q2
π(1) =

p1p0
q2q1

π(0)
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By recursion, we have

π(k) =
p0p1 · · · pk−1
q1q2 · · · qk

π(0)

Since π(0) + π(1) + · · ·+ π(d) = 1, we have

1 = π(0) +
p0
q1
π(0)π(1) +

p0p1
q1q2

π(0) + · · ·+ p0 · · · pd−1
q1 · · · qd

1 = π(0)

(
1 +

d∑
i=1

p0 · · · pi−1
q1 · · · qi

)

π(0) =
1

1 +
d∑
i=1

p0···pi−1

q1···qi

Therefore,

π(k) =

p0p1···pk−1

q1q2···qk

1 +
∑d
i=1

p0···pi−1

q1···qi

Remark. If d = ∞, the birth-death chain has a unique stationary distribution
iff

d∑
i=1

p0 · · · pi−1
q1 · · · qi

<∞

Example 3.1.7. Suppose we have d balls in each of the two urns. Total number
of red balls is d (total number of blue balls is also d). Let X0 be the number of
red balls in total in urn 1. We pick a ball from each urn at random and switch.
Then, X1 will be the number of red balls after first switching. We want to find
P and find its stationary distribution.

P (i, i) occurs when we pick red balls or red balls from both urns. Then,

P (i, i) = 2
i(d− i)
d2

Likewise, we have

P (i, i+ 1) =
(d− i)2

d2
, P (i, i− 1) =

i2

d2

Note the boundary conditions:

P (0, 0) = 0, P (0, 1) = 1, P (d, d) = 0, P (d, d− 1) = 1.
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Finally, we can write the transition matrix:

P =



0 1 0 . . . 0
1
d2

2(d−1)
d2

(d−1)2
d2 · · · 0

. . .

0 · · · 0 1 0


Since this chain is equivalent to birth-death Markov chain, we know that

π(k) =

p0p1 · · · pk−1
q1q2 · · · qk

1 +
d∑
i=1

p0 · · · pi−1
q1 · · · qi

Observe that

p0 · · · pk−1
q1 · · · qk

=
P (0, 1)P (1, 2) · · ·P (k − 1, k)

P (1, 0)P (2, 1) · · ·P (k, k − 1)

=

d2

d2
·

(d− 1)2

d2
· · ·

(d− (k − 1))2

d2

1

d2
·
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d2
· · ·

k2

d2

=
(d(d− 1) · · · (d− k + 1))2

(1 · 2 · · · k)2

=

(
d

k

)2

Then,

1 +

d∑
i=1

(
d

i

)2

=

d∑
i=0

(
d

i

)2

=

d∑
i=0

(
d

i

)(
d

d− i

)
=

(
2d

d

)
Therfore,

π(k) =

(
d
k

)(
d

d−k
)(

2d
d

)
3.2 Positive recurrence

We introduce a new notation:

mx = Ex[Tx] =

∞∑
k=1

kP (Tx = k|X0 = x),

where Tx = min{n ≥ 1, Xn = x}.
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Definition 3.3. Let x be a recurrent state. If mx <∞, then x is called positive
recurrent. If mx =∞, then x is called null recurrent.

Theorem 3.1. If x is transient, then mx =∞.

Proof. If x is transient, ρxx < 1. In other words, Px(Tx = ∞) = 1 − ρxx > 0.
Therefore,

mx =

∞∑
k=1

kP (Tx = k|X0 = x) ≥ ∞ · Px(Tx =∞) =∞

Recall that

G(x, y) = Ex[N(y)] = Ex

[ ∞∑
n=1

I{y} (Xn)

]
=

∞∑
n=1

Pn(x, y).

For any n ≥ 1, let

Nn(y) =

n∑
k=1

I{y} (Xk) ≤ n

Gn(x, y) = Ex [Nn(y)] =

n∑
k=1

P k(x, y)

Theorem 3.2.

1. If y is transient, then

lim
n→∞

Nn(y)

n
= 0, lim

n→∞

Gn(x, y)

n
= 0

for all x.

2. If y is recurrent, then

lim
n→∞

Nn(y)

n
=
I{Ty <∞}

my
, lim
n→∞

Gn(x, y)

n
=
ρxy
my

Corollary. Let C be an irreducible set of recurrent states. Then,

lim
n→∞

Gn(x, y)

n
= lim
n→∞

Nn(y)

n
=

1

my
,∀x, y ∈ C

Theorem 3.3. If x is positive recurrent and x→ y, then y is positive recurrent.
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Proof. If x is positive recurrent and x → y, then x ↔ y. In other words, there
exists n1 ≥ 1, n2 ≥ 1 such that Pn1(x, y) > 0, Pn2(xy) > 0. Observe that

Pn1+n+n2(y, y) ≥ Pn2(y, x)Pn(x, x)Pn1(x, y)

Observe that,

n∑
k=1

Pn1+n+n2+k(y, y) ≥ Pn2(y, x)

[
n∑
k=1

P k(x, x)

]
Pn1(y, x)

Then,

n+n1+n2∑
m=n1+n2+1

Pm(y, y) =
n∑
k=1

Pn1+n2+k(y, y)

= −
n1+n2∑
m=1

Pm(y, y) +

n1+n2∑
m=1

Pm(y, y) +

n+n1+n2∑
m=n1+n2+1

Pm(y, y)

=Gn+n1+n2
(y, y)−Gn1+n2

(y, y)

≥Pn2(y, x)Gn(x, x)Pn1(x, y)

Then,

Gn+n1+n2
(y, y)−Gn1+n2

(y, y)

n
≥ Pn2(y, x)

Gn(x, x)

n
Pn1(x, y)

Since Gn1+n2
(y, y)→ 0 as n→∞, we have2

1

my
≥ Pn1(x, y)Pn2(y, x)

1

mx
> 0

If mx is finite, then my must be finite as well.

Theorem 3.4. Let C be a finite irreducible set of recurrent states. Then, every
state in C is positive recurrent.

Proof. Clearly, given x ∈ C, ∑
y∈C

P k(x, y) = 1,

2 Above result is derived from the following:

lim
n→∞

Gn1+n2+n

n
= lim

n→∞

(n1 + n2 + n)Gn1+n2+n

n(n1 + n2 + n)
= 1 ·

1

my
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for all positive integer k. Then,

n =

n∑
k=1

∑
y∈C

Pn(x, y)

=
∑
y∈C

n∑
k=1

P k(x, y)

=
∑
y∈C

Gn(x, y)

Furthermore, ∑
y∈C

Gn(x, y)

n
= 1

=⇒ lim
n→∞

∑
y∈C

Gn(x, y)

n
= 1

=⇒
∑
y∈C

lim
n→∞

Gn(x, y)

n
= 1

Now, it follows that there exists z ∈ C such that

lim
n→∞

Gn(x, y)

n
> 0,

implying that mz < ∞ and z is positive recurrent. Since every state in C
communicated with z, every state in C is positive recurrent.

Remark. Let {Xn, n = 1, 2, . . . } be a Markov chain with finite state space S.
Then, all recurrent states are positive recurrent.

Theorem 3.5. Let π be a stationary distribution of a Markov chain. If y is
transient or null recurrent, then π(y) = 0.

Proof. Let π be a stationary distribution of the chain. Then, P (Xk = y) = π(y)
if the initial distribution is π. Then,

P (Xk = y) = P (X0 ∈ S,Xk = y)

=
∑
x∈S

P (X0 = x,Xk = y)

=
∑
x∈S

P (X0 = x)P (Xk = y|X0 = x)

=
∑
x∈S

π(x)P k(x, y) = π(y)
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Then, we get

π(y) =
1

n

n∑
k=1

∑
x∈S

π(x)P k(x, y)

=
∑
x∈S

1

n

n∑
k=1

π(x)P k(x, y)

=
∑
x∈S

π(x)
1

n

n∑
k=1

P k(x, y)

=
∑
x∈S

π(x)
Gn(x, y)

n

Thus,

π(y) = lim
n→∞

∑
x∈S

π(x)
Gn(x, y)

n

=
∑
x∈S

π(x) lim
n→∞

Gn(x, y)

n
= 0

Example 3.2.1. Does a Markov Chain with no positive recurrent states have
a stationary distribution?

Let π be a stationary distribution. By theorem 3.5, π(y) = 0 for all y ∈ S.
This yields a contradiction and a Markov Chain with no positive recurrent states
cannot have a stationary distribution.

Theorem 3.6. An irreducible positive recurrent Markov Chain has a unique
stationary distribution given by

π(x) =
1

mx

Example 3.2.2. Does a finite state Markov Chain have a stationary distribu-
tion?

Consider the following decomposition of the state space:

C = CR ∪ CT
= CPR ∪ CT
= C1 ∪ · · · ∪ Cj ∪ CT

Each Ci is an irreducible positive recurrent class. By the theorem, there is a
stationary on each Ci. Then,{

πi(x) = 1
mx

x ∈ Ci
πi(x) = 0 x /∈ Ci

is a stationary distribution.
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Example 3.2.3. When does a finite state Markov Chain have a unique sta-
tionary distribution?

All recurrent states must communicate.

Example 3.2.4. Can a finite state Markov Chain have exactly two stationary
distributions?

Assume π2, π2 are two different stationary distributions:

π1P = π1, π2P = π2

Then, for any 0 ≤ λ ≤ 1, λπ1 + (1 − λ)π2 is also a stationary distribution.
Therefore, a Markov Chain cannot have exactly two stationary distributions.

Theorem 3.7. Let {Xn, n = 0, 1, 2, . . . } be a Markov Chain with state space
S. Let N denote the nnumber of stationary distributions of the chain. Then,

N =


0 if there is no positive recurrent state

1 if there is one irreducible positive recurrent class

∞ else

Example 3.2.5. Consider the Birth-Death Markov chain. If∑ p0 · · · px−1
q1 · · · qx

<∞,

then there is a stationary distribution. This condition is in fact equivalent to
positive recurrence of a chain.

Previously, we have shown that an irreducible Birth-Death Markov Chain
with X = {0, 1, 2, . . . } (1) is recurrent iff

∞∑
x=1

q1 · · · qx
p1 · · · px

=∞,

and (2) has a unique stationary distribution iff

∞∑
x=1

p0 · · · px−1
q1 · · · qx

<∞.

These results lead to following theorems:

Theorem 3.8.

1. The chain is transient iff

∞∑
x=1

q1 · · · qx
p1 · · · px

<∞
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2. The chain is null recurrent iff

∞∑
x=1

q1 · · · qx
p1 · · · px

=∞,
∞∑
x=1

p0 · · · px−1
q1 · · · qx

=∞

3. The chain is positive recurrent iff

∞∑
x=1

p0 · · · px−1
q1 · · · qx

<∞

Example 3.2.6. A Birth-Death Markov Chain with px = qx = a is null recur-
rent.

Example 3.2.7. A Birth-Death Markov Chain with px = p and qx = q. Notice
that

∞∑
x=1

q1 · · · qx
p1 · · · px

=

∞∑
x=1

(
q

p

)
∞∑
x=1

p0 · · · px−1
q1 · · · qx

=

∞∑
x=1

(
p

q

)
Clearly, if p 6= q, one of them will converge and the other will diverge. Thus,
when p > q, the chain is transient and when p < q, the chain is positive
recurrent.

34



4 Long time behaviour

4.1 Period of a state

Definition 4.1. Let I be a set of positive integres. The greatest common divisor
of I, denoted by gcd(I) is defined as

gcd(I) = min{n, n|m for all m ∈ I}

Definition 4.2. The period of a state x is defined as

dx = gcd{n : Pn(x, x) > 0}

Example 4.1.1. Let S = {1, 2, 3}. Consider

P =

1/2 1/2 0
1/2 1/3 1/3
1/2 1/3 0


Since P 2(3, 3) > 0 and P 3(3, 3) > 0, its period is 1.

Example 4.1.2. Consider

P =

0 1 0
0 0 1
1 0 0


Clearly, 1→ 2→ 3→ 1. Therefore, period of 1 is 3.

Example 4.1.3. Consider a pure birth Markov chain with P (x, x + 1) = 1.
Then, d0 =∞.

Definition 4.3. A state x is called periodic if dx = 1.

Theorem 4.1. Let Ix = {n ≥ 1 : Pn(x, x) > 0}. By definition, dx = gcd Ix. If
1 ∈ Ix, then dx = 1.

Example 4.1.4. Consider a Markov Chain characterized by the following tran-
sition matrix:

P =

 0 1 0
1/2 0 1/2
0 0 1


Find the period of each state.

1. For x = 0, we have I0 = {2, 4, 6, . . . } because 0 → 1 → 0. Therefore,
d0 = 2.

2. For x = 1, we have I1 = {2, 4, 6, . . . } for a similar reason. Therefore,
d0 = 2.
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3. For x = 2, notice that 2 is an absorbing state. Since 2 → 2, we have
1 ∈ I2. Therefore, d2 = 1.

Theorem 4.2. If x↔ y, then dx = dy.

Proof. Let
Ix = {n ≥ 1 : Pn(x, x) ≥ 0},
Iy = {n ≥ 1 : Pn(y, y) ≥ 0}.

Since x↔ y, there exists n1 ≥ 1, n2 ≥ 1 such that Pn1(x, y) > 0 and Pn1(x, y) >
0. Thus, Pn1+n2 > 0.

Since n1 + n2 ∈ Ix, dx is a divisor of n1 + n2. For any m ∈ Iy, we have
Pm(y, y) > 0. Then,

Pn1+n2+m(x, x) ≥ Pn1(x, y)Pm(y, y)Pn2(y, x) > 0

This implies that n1 + n2 +m ∈ Ix. Since dx is a divisor of n1 + n2 +m and of
n1+n2, it is follows that that dx is also a divisor of m. Thus, dx ≤ dy. Likewise,
we can prove that dy ≤ dx. Therefore, dx = dy.

Recall that we can decompose any state space as follows:(⋃
i

CiPR

)
∪
(⋃

j

CjNR

)
∪ CT

By the previous theorem, we can conclude that each class has exactly one period.

4.2 Long time behaviour

Theorem 4.3. If y is null recurent, then

lim
n→∞

Pn(x, y) = 0

for all x.

Theorem 4.4. If {Xn, n = 0, 1, . . . } is an irreducible positive recurrent Markov
chian with period d,

1. If the chain is periodic, then

lim
n→∞

Pn(x, y) = π(y)

2. If the period of the chain is greater than or equal to 2, then for any x, y ∈ S
there exists an integer 0 ≤ r < d such that

lim
m→∞

Pmd+r(x, y) = dπ(y)

Further, Pn(x, y) = 0 if n 6= md+ r.
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Theorem 4.5 (Long time behaviour).

lim
n→∞

Pn(x, y) =


0 if y is transient or null recurrent

π(y) if y is positive recurrent and dy = 1{
dπ(y) for n = md+ r

0 else
if ρxy = 1, y is PR, and dy ≥ 2

Example 4.2.1. Consider a Markov chain characterized by the following tran-
sition matrix:

P =

 0 1 0
1/2 0 1/2
0 0 1


Then,

lim
n→∞

Pn(x, y) =

{
0 if y = 0, 1

1 if x = y = 2

Example 4.2.2. Let {Xn, n = 0, 1, 2} be a Markov chain with S = {1, 2, 3, 4}
and

P =


1/2 1/2 0 0
1/6 1/2 1/3 0
0 1/2 1/2 1/6
0 0 1/2 1/2


Find limn→∞ Pn.

We want to compute

Pn =


Pn(1, 1) Pn(1, 2) Pn(1, 3) Pn(1, 4)
Pn(2, 1) Pn(2, 2) Pn(2, 3) Pn(2, 4)
Pn(3, 1) Pn(3, 2) Pn(3, 3) Pn(3, 4)
Pn(4, 1) Pn(4, 2) Pn(4, 3) Pn(4, 4)


First, notice that

1→ 2→ 3→ 4→ 1

so all state communicate with each other. Since we have finite state space, we
have one close, irreducible, positive recurrent class. Also, we have

d1 = gcd{n ≥ 1, Pn(1, 1) > 0} = 1

since P 1(1, 1) = 1/2 > 0. Since all states are positive recurrent and have period
of 1, we can conclude that

lim
n→∞

Pn(x, y) = π(y)

for all states in S. Therefore,

lim
n→∞

Pn =


1/8 3/8 3/8 1/8
1/8 3/8 3/8 1/8
1/8 3/8 3/8 1/8
1/8 3/8 3/8 1/8


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Example 4.2.3. Let {Xn, n = 0, 1, 2} be a Markov chain with S = {1, 2, 3, 4}
and

P =


0 1 0 0

1/3 0 2/3 0
0 2/3 0 1/3
0 0 1 0


Find limn→∞ P2n and limn→∞ P2n+1.

Clearly, this chain is irreducible and positive recurrent. We also know that
its stationary distribution is given by

π =

(
1

8
,

3

8
,

3

8
,

1

8

)
Observe that

d1 = gcd{n ≥ 1, Pn(1, 1) > 0}
= gcd{2, 3, 6, . . . }
= 2

So there must exist r such that limn→∞ Pn(x, y) = dπ(y) for n = md+ r.
Notice that P 2n+1(1, 1) = 0. Then, we must have

lim
n→∞

P 2n(1, 1) = 2π(1) =
1

4
.

Likeiwse, we have P 2n(2, 1) = 0. Therefore, we must have

lim
n→∞

P 2n+1(2, 1) = 2π(1) =
1

4
.

Therefore, we can conclude that

P2n →


1/4 0 3/4 0
0 3/4 0 1/4

1/4 0 3/4 0
0 3/4 0 1/4



P2n+1 →


0 3/4 0 1/4

1/4 0 3/4 0
0 3/4 0 1/4

1/4 0 3/4 0


Example 4.2.4. Let {Xn, n = 0, 1, 2} be a Markov chain with S = {0, 1, 2, . . . }
and

P =


r0 p0 0 0 · · ·
q1 r1 p1 0 · · ·
0 q2 r2 p2 · · ·
...

. . .


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Clearly, we have

d =

{
1 if ri > 0for at least one i

2 else

Example 4.2.5. Let {Xn, n = 0, 1, 2, . . . } be a Markov chain with finite number
of states.

Assume that the chain is irreducible and each column of P add up to 1. Find
the stationary distribution of the chain.
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5 Continuous Time Markov Chain

In this section, we will still be looking at at most countable state space. However,
we introduce a new concept:

Definition 5.1 (Waiting time). Starting from state x, you wait at x for τx
until the next ”jump” occurs. In discrete time Markov chain, τx was fixed but
in continuous time, τx is a random variable.

In order to satisfy the Markov property, waiting time must follow the expo-
nential distribution, the only random variable with memoryless property.

5.1 Exponential distribution

Definition 5.2 (Exponential distribution). A random variable X that follows
an exponential distribution has the following properties:

1. X > 0

2. f(x) = λe−λx

3. E[x] = 1/λ

We observe that if λ is large, the waiting time becomes shorter. If λ goes to
infinity, waiting time will go to zero. On the other hand, if λ goes to 0, waiting
time will go to infinity. These are two boundary cases.

Example 5.1.1. Let X1, X2 be two independent exponential random variables
with respective parameters: λ1, λ2. Set X = min(X1, X2). Then, X is expo-
nential with parameter λ = λ1 + λ2

Proof. Notice that

P (X ≤ x) = 1− P (X > x)

= 1− P (min(X1, X2) > x)

= 1− P (X1 > x,X2 > x)

= 1− P (X1 > x)P (X2 > x)

Since CDF of an exponential distribution is F (x) = 1− e−λx, we get

1− P (X1 > x)P (X2 > x) = 1− (1− Fλ1
(x))(1− Fλ2

(x))

= 1− e−λ1xe−λ2x

= 1− e−(λ1+λ2)x

Therefore, X follows an exponential distribution with parameter λ = λ1 +
λ2.

Theorem 5.1. Let X1, X2, . . . , Xn be independent exponential random vari-
ables. Let X = min(X1, X2, . . . , Xn). Then, X is a exponential random variable
with parameter λ = λ1 + λ2 + · · ·+ λn.
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Recall that the Markov property is defined as the following:

P (Xn = xn|Xn−1 = xn−1, . . . , X0 = x0) = P (Xn = xn|Xn−1 = xn−1)

How does this apply in the continuous case?

Definition 5.3. For any n ≥ 1, let x0, x1, . . . , xn ∈ S. Then, the Markov
property is defined as the following:

P (Xτn = xn|X0 = x0, . . . , Xτn−1 = xn−1) = P (Xτn = xn|Xτn−1 = xn−1)

We now introduce a new notation. For any 0 ≤ s ≤ t, and x, y ∈ S, we have

P (s, t, x, y) = Pxy(s, t) = P (Xt = y|Xs = x)

Definition 5.4. Let T = [0,∞) and S be a finite or countable set. The stochas-
tic process is given by {Xt, t ∈ T} = {Xt, t ≥ 0}. Then,

1. The distribution of X0 is called the initial distribution of the process,
denoted by π.

2. The process {Xt, t ≥ 0} is continuous time Markov chain if for any n ≥
1, x0, x1, . . . , xn ∈ S, 0 ≤ t1 < · · · < tn,

P (Xtn = xn|Xt0 = x0, . . . , Xtn−1
= xn−1) = P (Xtn = xn|Xtn−1

= xn−1)

3. The Markov chain {Xt, t > 0} is time homogeneous if for any t, s ∈ T ,

P (Xt+s = y|Xs = x) = P (Xt = y|x0 = x)

4. For time-homogeneous Markov chain, Pxy(t) = P (Xt = y|X0 = x) is
called the transition function of the chain.

5. A state x is absorbing if P (Xt = x|x0 = x) = 1 for all t.

6. δxy =

{
1 if x = y

0 else

7. Q = (Qxy) is a transition probbability matrix such that Qxx = 0.

8. For each x ∈ S, let qx ≥ 0. Set qxy =

{
−qx if x = y

qxQxy if x 6= y

Theorem 5.2. Let {Xt, t > 0} be a homogeneous continuous time Markov
chain with waiting time distribution {exp(qx), x ∈ S} and transition probability
Q. Then, we have

1. Chaphen-Kolmogorov Equation:

Pxy(t+ s) =
∑
z∈S

Pxz(t)Pzy(s)
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2. Backward Equation:

P ′xy(t) =
∑
z∈S

qxzPzy(t) ⇐⇒ P′(t) = AP,

where A = (qxy).

Proof. For any x, y ∈ S and t, s ∈ T , we have

Pxy(t+ s) = P (Xt+s = y|X0 = x)

= P (Xt+s = y,Xt ∈ S|X0 = x)

=
P (Xt+s = y,Xt ∈ S,X0 = x)

P (X0 = x)

=

∑
z∈S P (Xt+s = y,Xt = z,X0 = x)

P (X0 = x)

=
∑
z∈S

P (Xt+s = y,Xt = z,X0 = x)

P (Xt = z,X0 = x)

P (Xt = z,X0 = x)

P (X0 = x)

=
∑
z∈S

P (Xt+s = y|X0 = x,Xt = z)P (Xt = z|x0 = x)

=
∑
z∈S

P (Xt+s = y|Xt = z)P (Xt = z|x0 = x)

=
∑
z∈S

Pzy(s)Pxz(t)

This proves the first statement.
Now, we prove the second statement:

Pxy(t) = P (Xt = y|X0 = x)

= P (τ1 > t,Xt = y|X0 = x)︸ ︷︷ ︸
no jump occurs

+P (τ1 ≤ t,Xt = y|X0 = x)

= δxy P (τ1 > t)︸ ︷︷ ︸
e−qxt

+P (τ1 ≤ t,Xτ1 6= x,Xt = y|X0 = x)

= δxye
−qxt +

∑
z 6=x

P (τ1 ≤ t,Xτ1 6= x,Xt = z|X0 = x)

= δxye
−qxt +

∑
z 6=x

∫ t

0

qxe
−qxsQxzPzy(t− s)ds

= δxye
−qxt +

∫ t

0

qxe
−qxs

∑
z 6=x

QxzPzy(t− s)ds

= δxye
−qxt +

∫ t

0

qxe
−qx(t−u)

∑
z 6=x

QxzPzy(u)du

= δxye
−qxt + e−qxt

∫ t

0

qxe
qxu
∑
z 6=x

QxzPzy(u)du
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Then, we get

P ′xy(t) = −qxe−qxt
δxy +

∫ t

0

qxe
qxu
∑
z 6=x

QxzPzy(u)du

+ qx
∑
z 6=x

QxzPzy(t)

= −qxPxy(t) +
∑
z 6=x

qxQxzPzy(t)

= qxxPxy(t) +
∑
z 6=x

qxzPzy

=
∑
z

qxzPzy(t)

Now, this completes the proof.

So the matrix A determines the existence of Markov chain and is analogous
to transition matrix in discrete time Markov chain. Notice that Q provies the
jumping mechanism and qx provides the waiting mechanism. So the matrix
A, which is a combination of qx and Q, is fundamental in continuous Markov
chains.

What happens if we let t→ 0? We get

P ′xy(0) =
∑
z∈S

qxzPzy(0)

We can consider two cases here:

1. y = x. P ′xx(0) = qxx = −qx.

2. y 6= x. P ′xy(0) = qxy.

Now, notice that A = qxy is not a transition matrix. We can first look at
some of its properties:

• |qxy| ∈ [0,∞]

• qxy > 0 for y 6= x, qxy ≤ 0 for y = x

•
∑
y qxy = 0

Let’s take a look at an example:

Example 5.1.2. Consider the following matrix:

A =

−100 60 40
10 −20 10
1 1 −2


If we start from state 1, we are very likely to move to other states (notice that
the magnitude of A11 is large). If we start from state 3, we are not as likely to
move to other states. This directly translates to waiting time.
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Also, we notice that A21 = A23 and A31 = A32. This implies that you are
equally likely to move to any other states if you start from either state 2 or 3.
On the other hand, A12 > A13. So if you start from state 1, you are more likely
to move to state 2 than 3.

Let’s go back to Champhen-Kolmogorov equation:

Pxy(t+ h) =
∑
z∈S

Pxz(t)Pzy(h)

We can then divide both sides by h

Pxy(t+ h)− Pxy(t)

h
=

∑
z∈S Pxz(t)Pzy(h)− Pxy(t)

h

As we let h→ 0, we get the forward equation.

P ′xy =
∑
z

Pxz(t)qzy

Example 5.1.3 (Poisson process). Consider

A =


−λ λ 0 0 0 · · ·
0 −λ λ 0 0 · · ·
0 0 −λ λ 0 · · ·
...

. . .


Find the distribution of Xt.

First, notice that

P (Xt = 0) = P0(t)

= P (τ1 > t)

= 1− P (τ1 < t)

= 1− (1− e−λt) = e−λt

Then, by using the forward equation, we can compute P0(Xt = 1) = P ′01(t):

P ′01(t) =
∑
z∈S

P0z(t)qz1

= P00(t)q01 + P01(t)q11

= λP00(t)− λP01(t)

Solving the differential equation, we get

P01(t) = λte−λt.
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By induction, we find that

eλtP0n(t) =

∫ t

0

λeλsP0(n−1)(s)ds

=

∫ n

0

λeλs
(λs)n−1

n− 1
e−λsds

=
(λt)n

n!

Therefore, we get

P0n(t) =
(λt)n

n!
e−λt

Example 5.1.4. Consider a Markov chain with state space S = {0, 1} where

A =

(
−λ λ
µ −µ

)
Find Pxy(t) for x, y ∈ S.

In this example, we can use the backward equation. First, observe that

P ′00(t) =
∑
z∈S

q0zPz0(t)

= q00P00(t) + q01P10(t)

= −λP00(t) + λP10(t)

Likewise, we have

P ′10(t) =
∑
z∈S

q1zPz0(x)

= q10P00(t) + q11P10(t)

= µP00(t)− µP10(t)

Combining the two equations, we get

P ′00(t)− P ′10(t) = −(λ+ µ)(P00(t)− P10(t)).

Solving the differential equation, we get

P00(t)− P10(t) = e−(λ+µ)t

Then, we have

P ′00(t) = −λP00(t) + λ(P00(t)− e−(λ+µ)t)
= −λe−(λ+µ)t
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Integrating,

P00(t)− P00(0) = −λ
∫ t

0

e−(λ+µ)sds

= − λ

λ+ µ
(1− e−(λ+µ)t)

=⇒ P00(t)− 1 = − λ

λ+ µ
(1− e−(λ+µ)t)

=⇒ P00(t) =
µ

λ+ µ
+

λ

λ+ µ
e−(λ+µ)t

Lastly, we have

P10(t) =
µ

λ+ µ
− µ

λ+ µ
e−(λ+µ)t

Example 5.1.5 (Birth-death continuous time). We can write a general in-
finitesimal matrix for continuous time birth-death Markov chain as follows:

A =


−λ0 λ0 0 0 · · ·
µ1 −(λ1 + µ1) λ1 0 · · ·
0 µ2 −(λ2 + µ2) λ2
...

. . .


Example 5.1.6. Consider

A =


0 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
...

. . .


Then, we get P00(t) = 1, P55(t) = 1, P17(t) = 0.

Example 5.1.7 (Branching process). Each individual will wait an exponential
time with parameter λ > 0 independently. At the end of the waiting time,
the individual will produce 2 offsprings with probability p or no offsprings with
probability 1− p. Let Xt be the total number of individuals at time t.

It is clear that S = {0, 1, 2, . . . }. First, we know that q00 = 0 because if
you have no population, it will stay at 0 forever and no offsprings will not be
produced. Then, it directly follows that q0i = 0 for all i > 0.

Now, we look at q11. Since we have only one individual whose waiting time
has parameter λ, we have q11 = −λ. Using the probabilities given, we get
q10 = (1− p)λ and q12 = pλ.

Notice that each individual has an independent waiting time distribution.
So two individuals cannot have identical waiting time so p(τi = τj) = 0 for all
i 6= j where τi is the waiting time of an individual. So you can either go to state
x + 1 (produce 2 offsprings) or x − 1 (produce 0 offsprings) given that you’re
at state x. Now, we want to compute qxx. Notice that the jump will happen
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when the first person out of x individuals produces offsprings. So we want the
minimum time of n waiting times. By theorem 5.1, we know that the minimum
waiting time is an exponential distribution with λx. So we get qxx = −λx.
Then, it directly follows that qx x+1 = λxp and qx x−1 = λx(1− p).

Example 5.1.8 (Infinite server Queueing model). Customers arrive for ser-
vice according to a poisson process with parameter λ. Each customer will be
served after arrival. The serving then follows exponential with parameter µ. All
services are independent.

Then, we want to look at the transition matrix, Q. Notice that a customer
arrives at a rate λ and any of the customers can be served at a per customer
rate µ. Then, clearly, the probability of going from x to x+ 1 is λ/(λ+xµ) and
the probability of going from x to x− 1 is xµ/(λ+ xµ), where x is the number
of customers.

So we can write hte infinitesimal matrix as follows:

A =


−λ0 λ0 0 · · ·
µ1 −(µ1 + λ1) λ1 · · ·


Example 5.1.9 (Pure birth Markov Chain). For pure bith Markov Chain, we
have µx = 0 for all x. Then, the forward equation is given by

P ′xy(t) =
∑
z∈S

Pxz(t)qzy

= Px(y−1)(t)q(y−1)y + Pxy(t)qyy

= Px(y−1)(t)λy−1 − λyPxy(t)

Therefore, we get

P ′xy(t) = −λyPxy(t) + λy−1Px(y−1)(t)

Now, we want to solve this system of equation.
If y < x, then Pxy(t) = 0.
If y = x, then we have λx−1Px(x−1)(t). Thus, we have

P ′xx(t) = −λxPxx(t)

=⇒ P ′xx(t) = e−λxt, Pxx(0) = 1

If y = x+ 1, we get

Px(x+1)(t) = −λx+1Px(x+1)(t) + λxPxx(t)

= −λx+1Px(x+1)(t) + λxe
−λxt,

which yields
P ′x(x+1) + λx+1Px(x+1) = λxe

−λxt.
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Integrating, we get

Px(x+1)(t) =

{
λxte

−λx+1t, λx+1 = λx
λx

λx+1−λx
e−λx+1t

(
e(λx+1]−λx)t − 1

)
, λx+1 6= λx

Lastly, if y > x+ 1, we get

P ′xy(t) = −λyPxy(t) + λy−1Px(y−1)(t)

eλyt
(
P ′xy(t) + λyPxy(t)

)
= λy−1Px(y−1)(t)e

λyt(
eλytPxy(t)

)′
= λy−1Px(y−1)(t)e

λyt

=⇒ Pxy(t) = λy−1

∫ t

0

e−λy(t−s)Px(y−1)(s)ds.

This is the general pure birth process.

Example 5.1.10 (Pure birth). Pure birth happens when µx > 0 and λx = 0.
This relates to a biological process called Coalescent Markov Chain.

Example 5.1.11 (Yule Process). Yule process is a linear growth Markov chain
were λx = ax, where a > 0. Essentially, it is a special type of Pure Birth
process. So let’s find the solution.

When y < x, we get Pxy(t) = 0.
When y = x, we get Pxx(t) = e−axt.
When y = x+ 1, we get

Px(x+1)(t) =
λx

λx+1 − λx
(
e−λxt − e−λx+1t

)
= x

(
e−at

)x (
1− e−at

)
.

When y = x+ 2, we get

Px(x+2)(t) = λx+1

∫ t

0

eλx+2(t−s)Px(x+1)(s)ds

= λx+1

∫ t

0

eλx+2(t−s)x
(
e−as

)x (
1− e−as

)
ds

=

(
x+ 1

2

)(
e−at

)x (
1− eat

)2
By induction, we get

Pxy(t) =

(
y − 1

y − x

)(
e−at

)x (
1− e−at

)y−x
.

This is negative binomial!
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5.2 Recurrent and transient states

Definition 5.5 (Hitting time). Let {xT , t ≥ 0} be continuous time Markov
Chain with S. For any y ∈ S, let τ1 denote the waiting time before the first
jump, and set

Ty = inf{t ≥ τ1 : Xt = y}.

From now on, we denote ρxy = P (Ty <∞|X0 = x).

Definition 5.6 (Transient and recurrent states). A state x is transient iff ρxx <
1. x is recurrent iff ρxx = 1.

Theorem 5.3. Let τ1, τ2, . . . be the jump times of {Xt, t ≥ 0}. Set yn =
Xτn . Then, {yn, n = 0, 1, . . . } is a discrete time Markov Chain with one-step
transition probability matrix P = Q, where

Qxy =

{
0, if y = x
qxy

qx
, if y 6= x

{yn, n ∈ N} is called the embedded Markov Chain of {Xt, t ≥ 0}.

Theorem 5.4. A state is recurrent or transient under {Xt, t ≥ 0} iff x is
recurrent or transient under {yn, n ∈ N}.

Remark. If S is finite, then S = CR∪CT and at least one recurrent class exists.

Definition 5.7 (Stationary Distribution). π(x) is a stationary distribution of
a Continuous Time Markov Chain iff πP(t) = π for every t.

Equivalently, by differentiating, we obtain the following expression:

πP′(0) = 0.

Theorem 5.5. A distribution π is stationary iff πA = 0 or
∑
x∈S

π(x)qxy = 0 for

all y ∈ S.

Example 5.2.1. Consider a continuous time Markov Chain, {Xt, t > 0} with
S = {1, 2}. Let

A =

(
−1 1
−10 10

)
Then, the transition matrix can be found by solving the following system of
linear equations:

(π(1), π(2))

(
−1 1
10 −10

)
= 0

So we get
π = (10/11, 1/11)

Definition 5.8 (Mean return time). mx =
∑
x (Tx).
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Definition 5.9 (Positive recurrent). A state x is positive recurrent iff mx <∞.

Remark. The positive recurrenct set under {Xt, t ≥ 0} is different from the
positive recurrent set under {ym,m ≥ 0}.

Theorem 5.6. Stationary distribution is concentrated on positive recurrent
states only.

Theorem 5.7. Absorbing state is positive reccurent. If x is non-absorbing and
positive recurrent, then the stationary distribution on the irreducible closed set
containing x is

π(x) =
1

qxmx

5.3 Continuous time Birth-Death Markov Chain

Clearly, pure birth Markov Chain is transient. On the other hand, pure death
is not actually recurrent. In this case, we have to write S = {0} ∪ {1, 2, 3, . . . },
and {0} is the only irreducible and recurrent set.

Now, consider a case where λx > 0, µx > 0. The chain is irreducible. To
understand the behaviour, we have to study the embedded chain, {Yn = Xτn},
whose transition matrix is given by

P = Q =

 0 1 0 . . .
µ1

µ1+λ1
0 µ2

µ2+λ2
0

. . .


Recall that a birth-death Markov Chain is transient iff

∑
x Γx < ∞. So in

this case, the chain is transient iff

∞∑
n=1

µ1

(λ1+µ1)
µ2

(λ2+µ2)
µ3

(λ3+µ3)
· · · µn

(λn+µn)

λ1

(λ1+µ1)
λ2

(λ2+µ2)
λ3

(λ3+µ3)
· · · λn

(λn+µn)

=

∞∑
n=1

µ1µ2 · · ·µn
λ1λ2 · · ·λn

<∞

By checking at this criteria, we can test whether the chain is recurrent or not.
Now, let’s look at the stationary distribution. Recall that stationary distri-

bution, π, is given by solving πA = 0. Then, we get the following set of linear
equations:

−λ0π(0) + µ1π(1) = 0

λ0π(0)− (λ1 + µ1)π(1) + µ2π(2) = 0

λ1π(1)− (λ2 + µ2)π(2) + µ3π(3) = 0

...

λn−1π(n1)− (λn + µn)π(n) + µn+1π(n+ 1) = 0
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Solving this recursively, we get

π(1) =
λ0
µ1
π(0), π(2) =

λ0λ1
µ1µ2

π(0), π(3) =
λ0λ1λ2
µ1µ2µ3

, . . .

In general, we have

π(n+ 1) =
λ0 · · ·λn
µ0 · · ·µn+1

π(0)

Then, we have

∞∑
n=0

π(n) = π(0)

[
1 +

λ0
µ1

+
λ0λ1
µ1µ2

+ · · ·
]

= 1

So we can solve this iff the term within the bracket is finite. In other words, the
chain is positive recurrent iff

∞∑
n=1

λ0 · · ·λn−1
µ1 · · ·µn

<∞.

Example 5.3.1. Consider a continuous time Markov Chain with

A =


−1 1 0 · · ·
1 −1 1 0 · · ·
0 1 −2 1 · · ·

. . .


Since

∞∑
n=1

µ1···µn

λ1···λn
=
∞∑
n=1

1 =∞, the chain is recurrent. Likewise, we can check the

second criteria to find out that this is null recurrent. Then, we get limt→∞ Pxy(t) =
0 for all state x, y ∈ S.

Example 5.3.2. Consider a continuous time birth-death Markov Chain with
λx = 1 and µx = 1 + 1/x. Then, we still get a null recurrent chain.

Example 5.3.3 (Infinite Server Queue). Consider a birth-death Markov chain
with λx = λ and µx = ax. Determine the transient, null recurrent, and positive
recurrent states.

First, notice that this is an irreducible Markov Chain. Then, we have

∞∑
n=1

λ0 · · ·λn−1
µ1 · · ·µn

=

∞∑
n=1

(λ/µ)n

n!

= eλ/µ − 1 <∞.

So this chain is positive recurrent.
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Further, we get

π(x) =

λ0···λx−1

µ1···µx

1 +
∑∞
n=1

λ0 · · ·λn−1
µ1 · · ·µn

=
(λ/µ)x

x!
e−λ/µ

Example 5.3.4 (Finite server queue). Consider a birth-death Markov chain
with

λx = λ, µx =

{
ax if x < N

aN if x ≥ N

First, notice that

∞∑
n=1

µ1 · · ·µn
λ1 · · ·λn

=

N−1∑
n=1

µ1 · · ·µn
λ1 · · ·λn

+
µ1 · · ·µN−1
λ1 · · ·λN−1

∞∑
n=N

µN · · ·µn
λN · · ·λn

Since the first term is finite, we just have to consider the second term:

∞∑
n=N

µN · · ·µn
λN · · ·λn

=

∞∑
n=N

(
aN

λ

)n−(N−1)
=

∞∑
m=0

(
aN

λ

)m+1

Therefore, this chain is recurrent iff aNλ ≥ 1.
Likewise, we have

∞∑
n=1

λ0 · · ·λn−1
µ1 · · ·µn

=

N−1∑
n=1

λ0 · · ·λn−1
µ1 · · ·µn−1

+
λ0 · · ·λn−2
µ1 · · ·µN−1

∞∑
n=N

(
λ

aN

)n−N+1

=

N−1∑
n=1

λ0 · · ·λn−1
µ1 · · ·µn−1

+
λ0 · · ·λn−2
µ1 · · ·µN−1

∞∑
k=1

(
λ

aN

)k
In conclusion, 

aN < λ transient

aN > λ positive recurrent

aN = λ null recurrent

Example 5.3.5. Consider a birth-death Markov chain with λx = 1/(x+1) and
µx = 1. This chain is positive recurrent because as x grows large, you are more
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likely to come back. More precisely, we have

∞∑
n=1

λ0 · · ·λn−1
µ1 · · ·µn

=

∞∑
n=1

1

n!

=
∑
∞
n = 0

1

n!
− 1

= e− 1 <∞

Example 5.3.6. Consider a birth-death Markov chain with µx = 1 and λx =
1− 1/(x+ 2) = (x+ 1)/(x+ 2). Then, we have

∞∑
n=1

λ0 · · ·λn−1
µ1 · · ·µn

=

∞∑
n=1

1

n+ 2
=∞

Clearly, this is not positive recurrent. Further,

∞∑
n=1

µ1 · · ·µn
λ1 · · ·λn

=

∞∑
n=1

n+ 2

2
=∞

So this chain is null recurrent.
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